

Gravitational-Wave Asteroseismology

Illuminating Dense Nuclear Matter
through Dynamical Tides

Fabian Gittins | IReNA Online Seminar | 16 Jan 2026

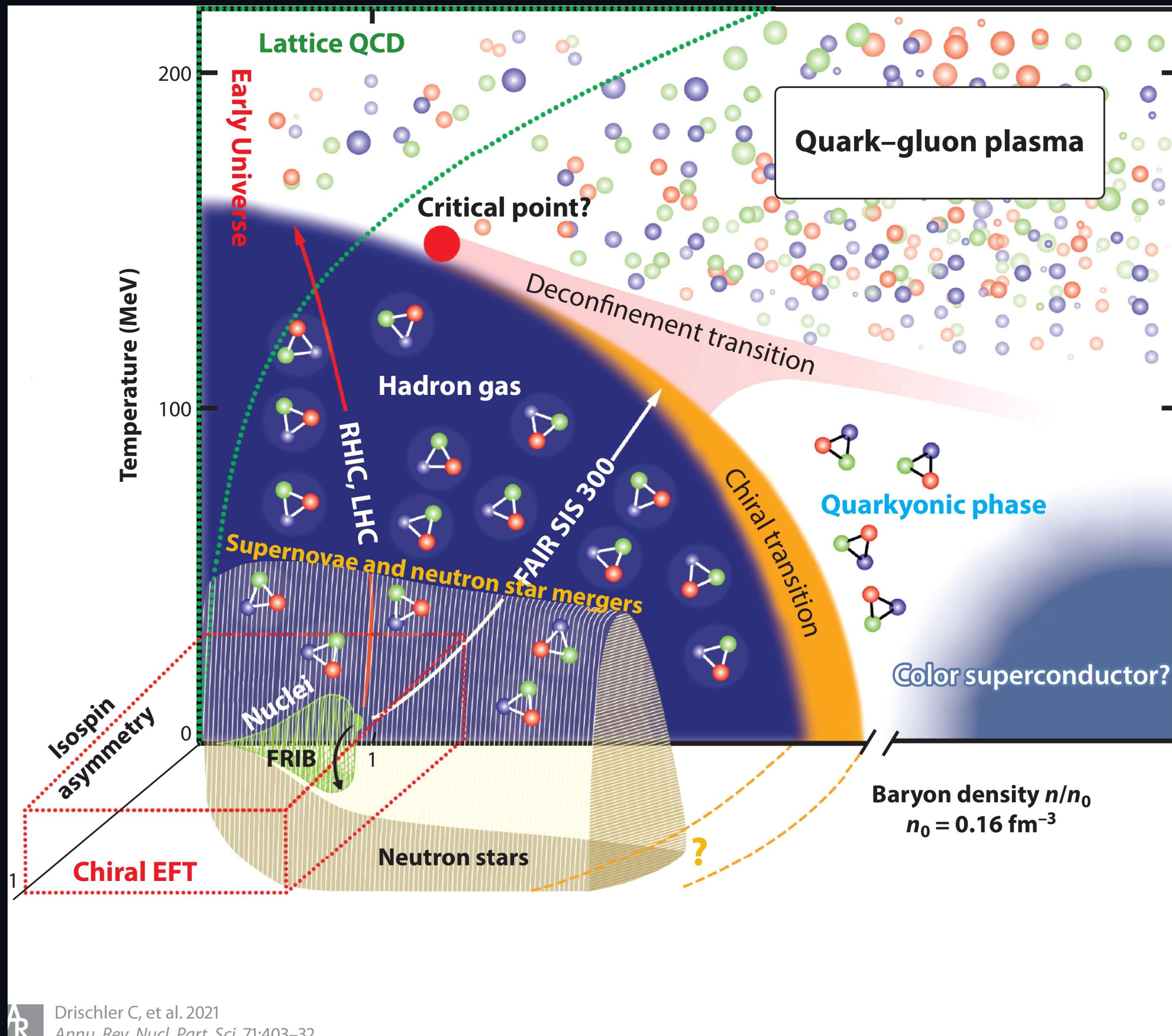
Utrecht
University

Funded by
the European Union

Overview

- Gravitational waves probe *nuclear physics* through observations of **neutron stars**
- Tidal dynamics present opportunity to conduct **asteroseismology**
- Neutron-star oscillation modes are notably rich
- Opportunities and challenges ahead

Quantum Chromodynamics (QCD)

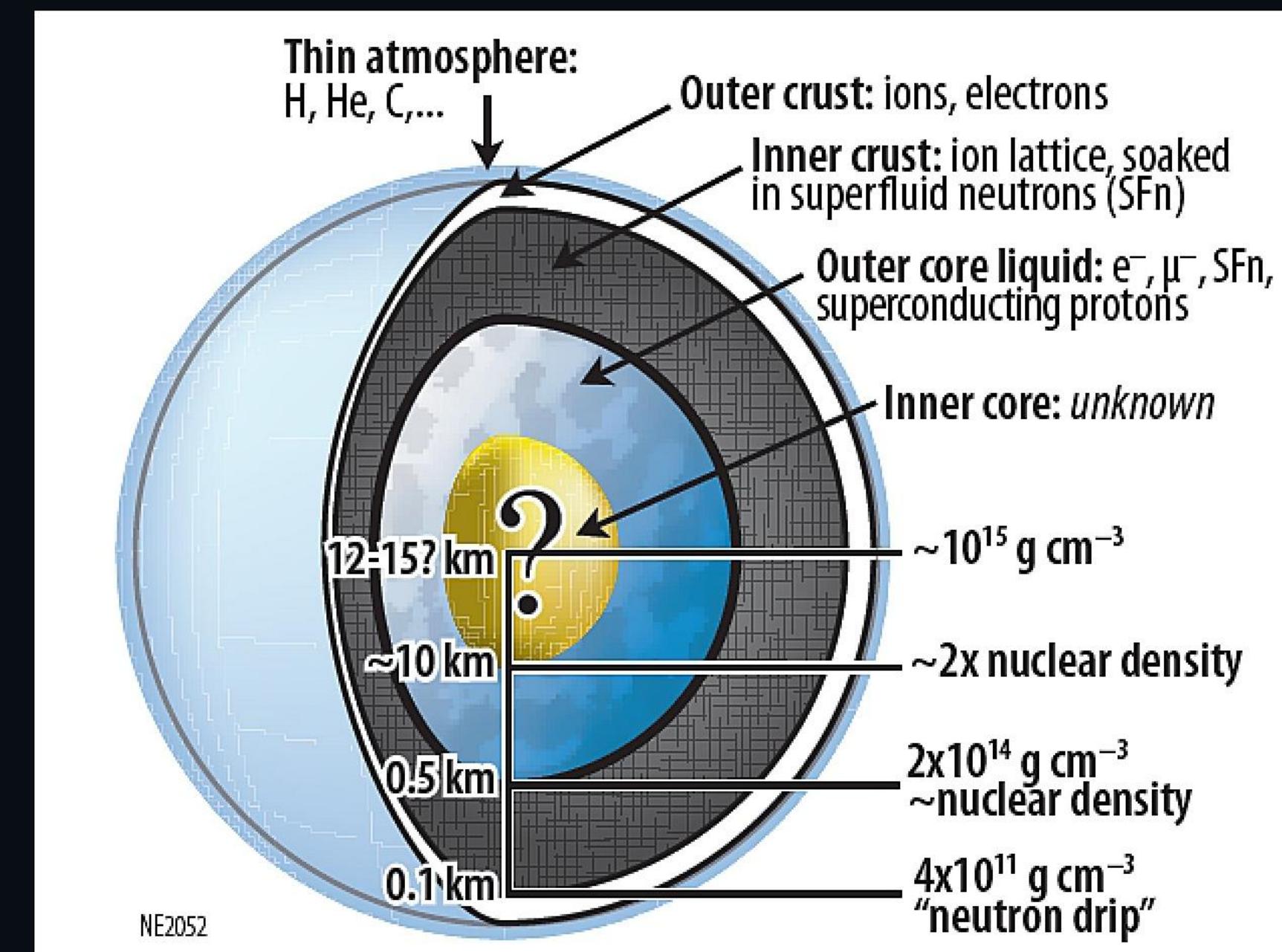


Physics of Neutron Stars

- Neutron stars are extreme laboratories

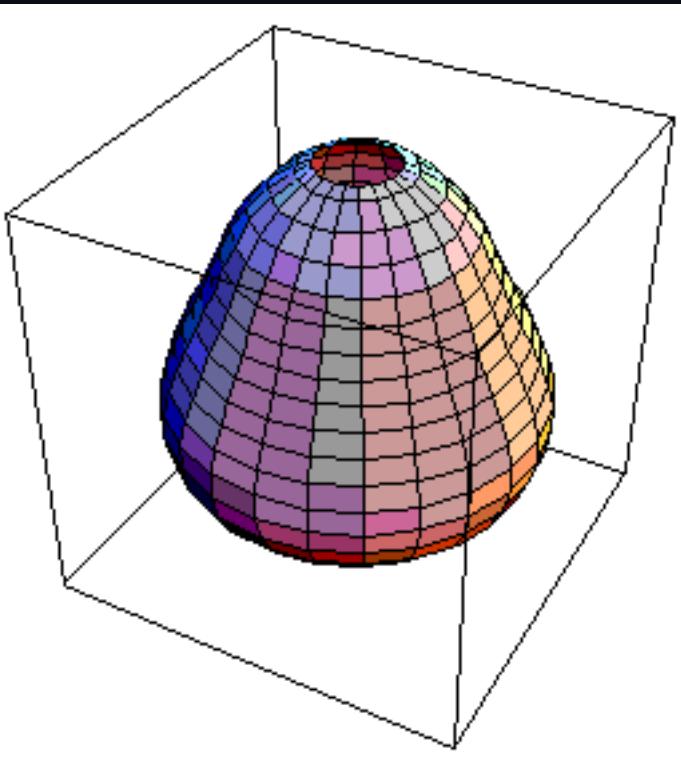
- Strong-field gravity
 - Dense nuclear matter
 - Rapid rotation
 - Strong magnetic fields
 - Superfluidity
 - Solid crusts

- Each of these aspects give rise to their own family of **oscillation modes**

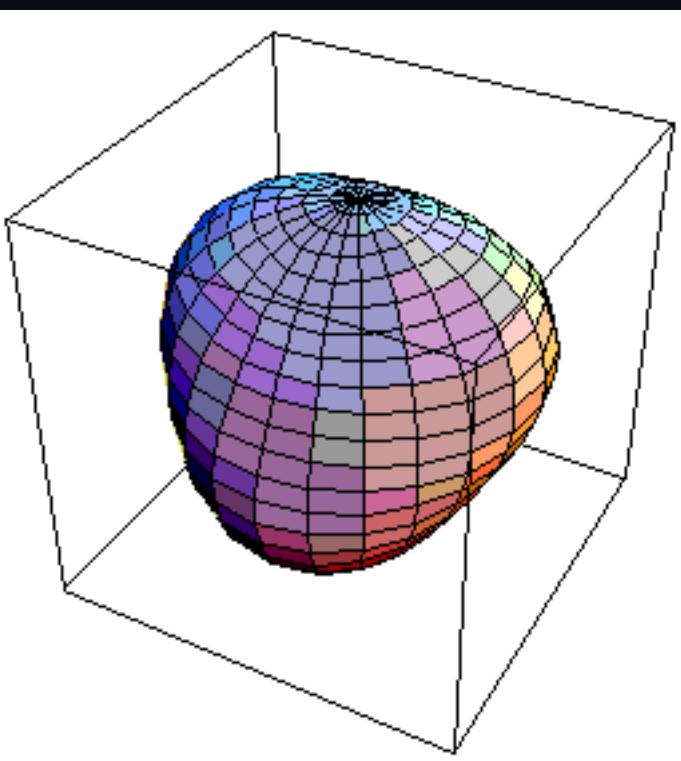


Neutron-Star Mode Compendium

- f -mode: scales with average density
- p -modes: sound waves in the star (overtones of the f -mode)
- g -modes: buoyancy waves from thermal/composition gradients
- inertial modes (including r -modes): associated with rotation
- i -modes: arise from phase transitions
- Also:
 - w -modes, s -modes, Alfvèn modes, ...



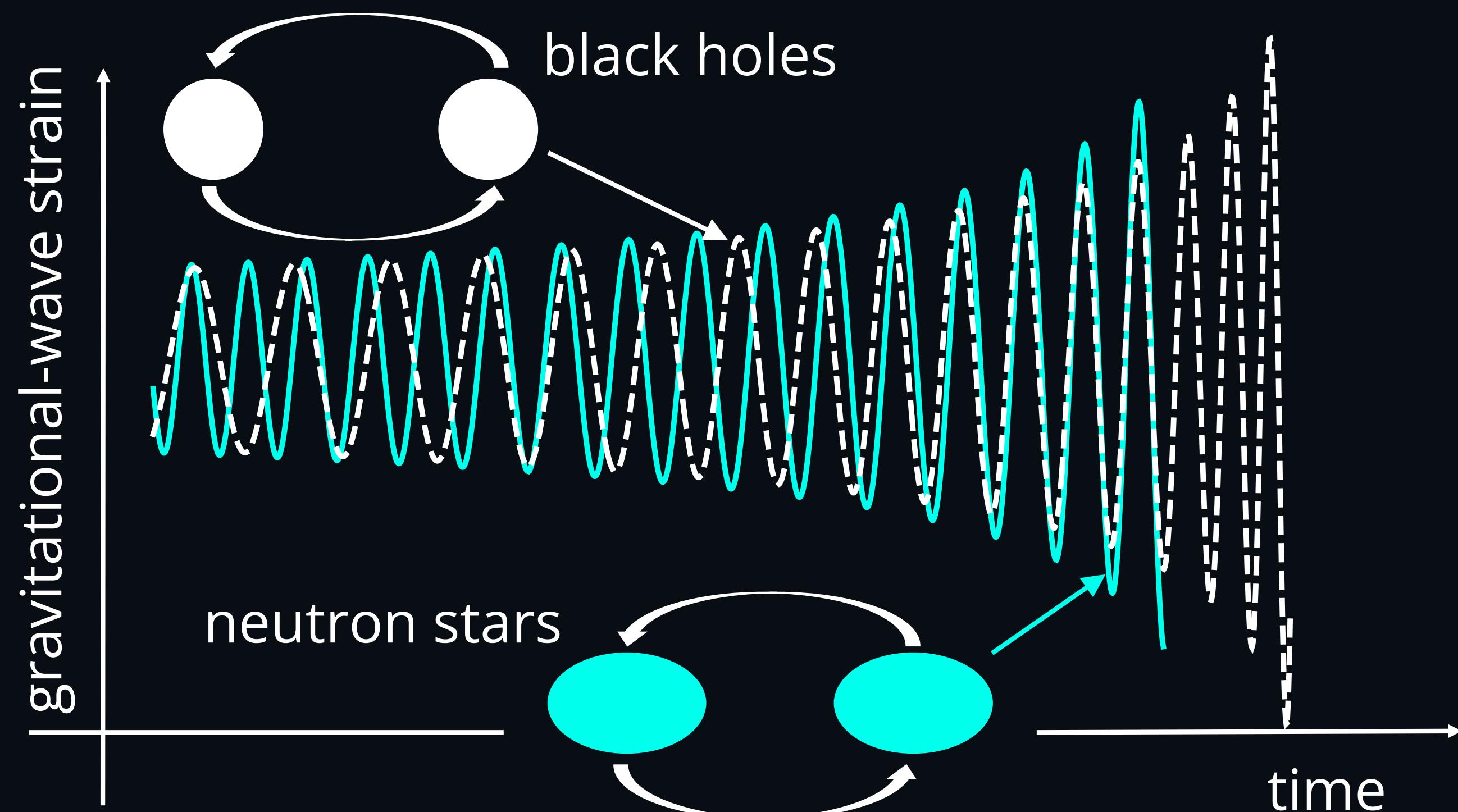
$(l, m) = (3, 0)$



$(l, m) = (3, 2)$

Matter Effects

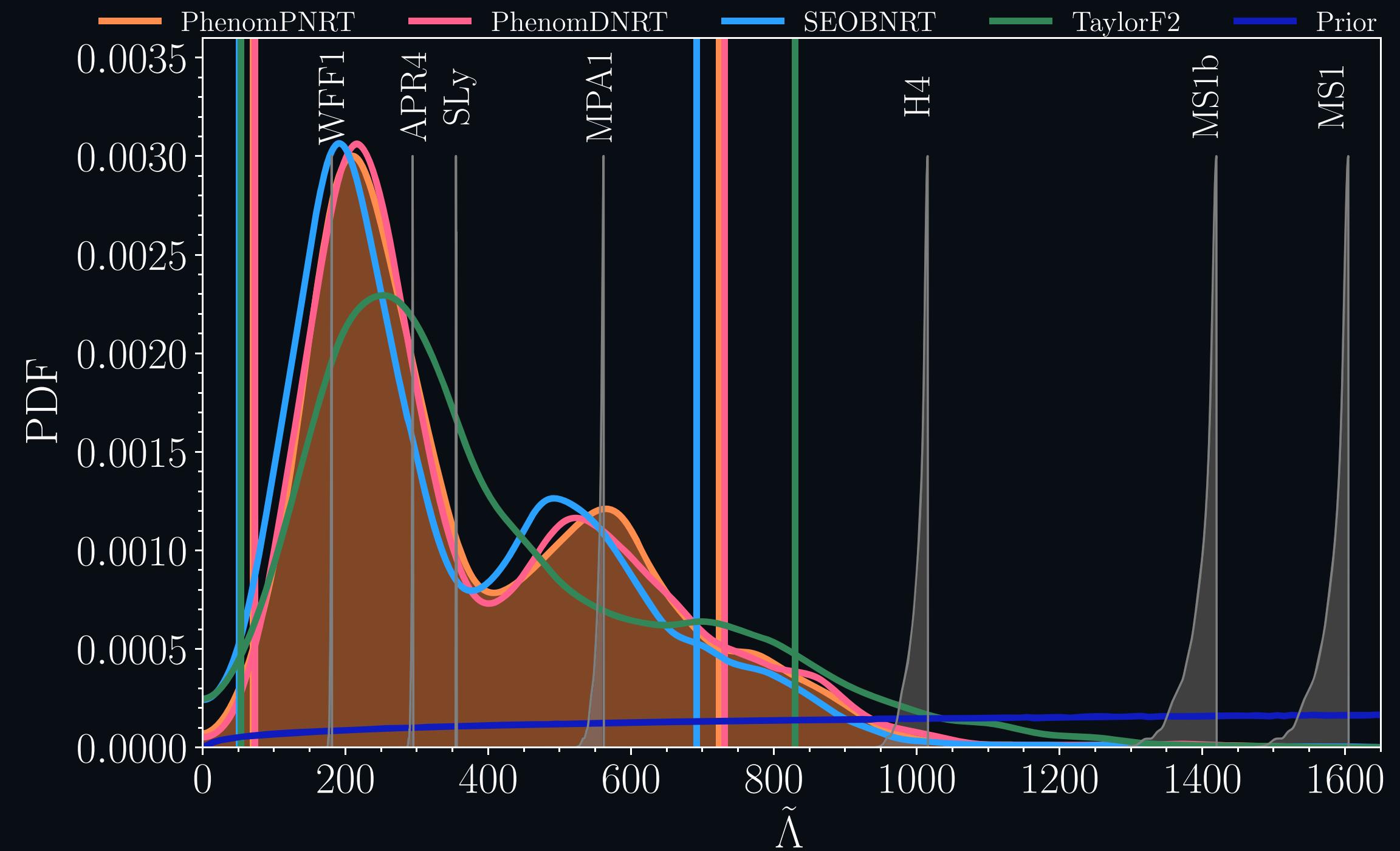
- Consider two compact binaries: one with **black holes**, while the other comprises **neutron stars**
- The binaries are otherwise identical; same component *masses, spins, binary orientation and position* with respect to the detectors



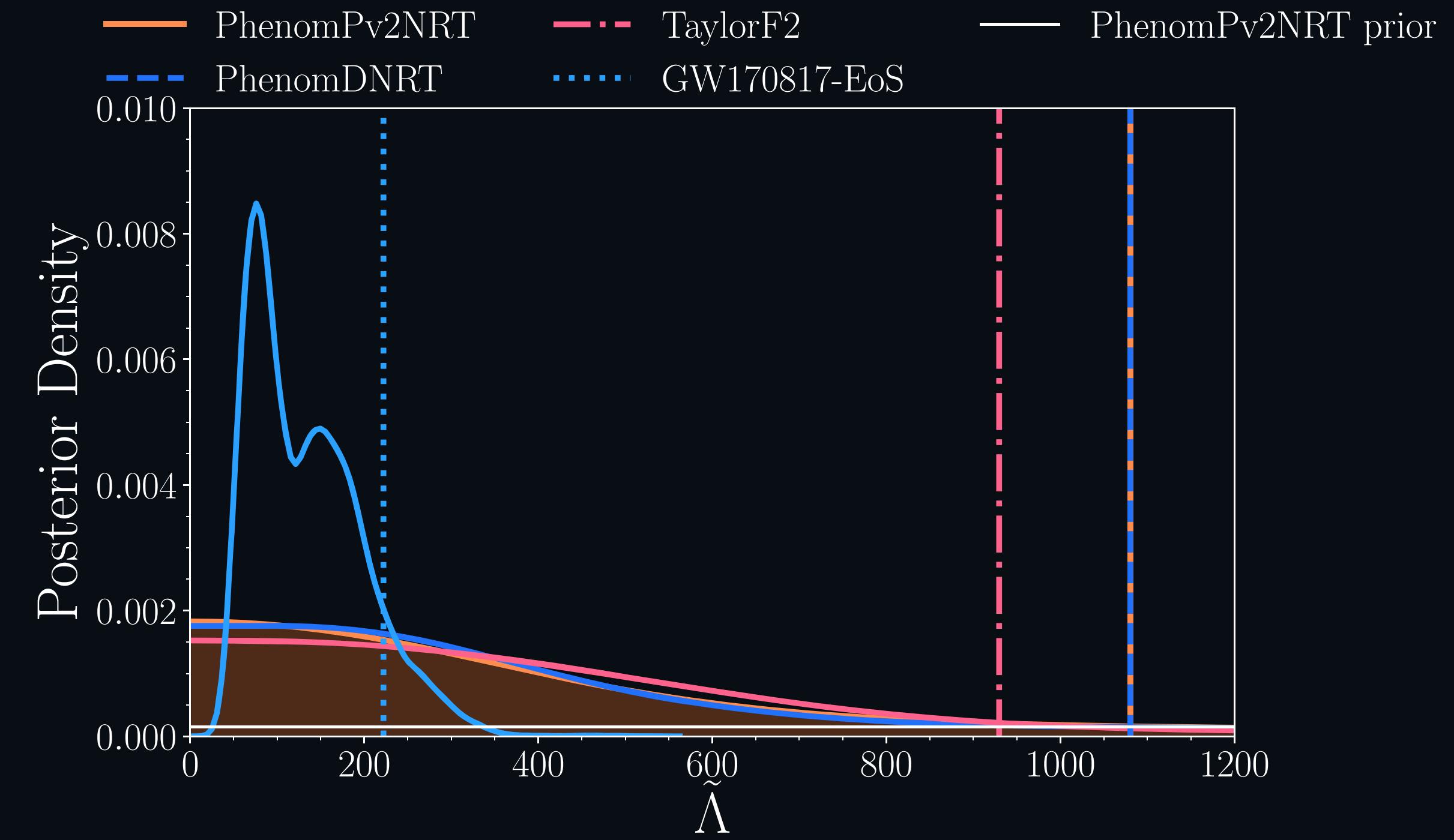
Static Tide

- Assumptions:
 - Components are well separated, $\epsilon = (M'/M)(R/D)^3 \ll 1$
 - The orbital frequency is slow, $\lambda = \dot{\Phi}/\omega_\alpha \ll 1$

Matter Constraints: GW170817 & GW190425



[LIGO-Virgo Collaboration, Phys. Rev. X **9**, 011001 (2019)]



[LIGO-Virgo Collaboration, Astrophys. J. **892**, L3 (2020)]

→ Provided the function $\rho = \rho(p)$, one can solve for M and Λ

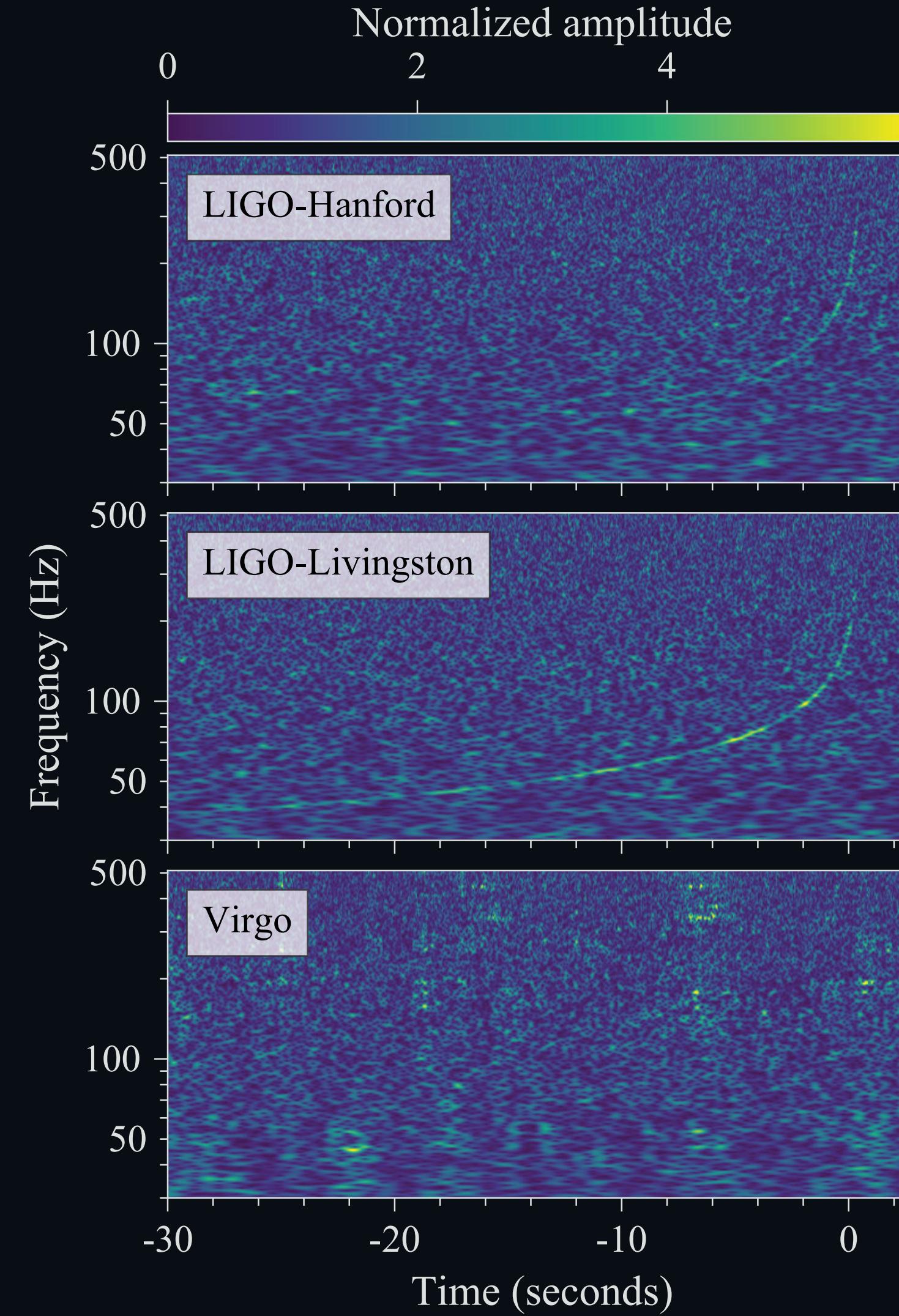
Static Tide

- Assumptions:
 - Components are well separated, $\epsilon = (M'/M)(R/D)^3 \ll 1$
 - The orbital frequency is slow, $\lambda = \dot{\Phi}/\omega_\alpha \ll 1$

Dynamical Tide

- Assumptions:
 - Components are well separated, $\epsilon = (M'/M)(R/D)^3 \ll 1$
 - The orbital frequency is slow, $\lambda = \dot{\Phi}/\omega_\alpha \ll 1$

Inspiral



- The static approximation inevitably breaks down,
$$\lambda = \dot{\Phi}/\omega_\alpha \sim O(1)$$
- The frequency ω_α represents a characteristic mode frequency,

$$\omega_f \sim \sqrt{\frac{GM}{R^3}} \approx 2\pi \cdot 2.2 \text{ kHz} \left(\frac{M}{1.4M_\odot} \right)^{1/2} \left(\frac{10 \text{ km}}{R} \right)^{3/2}$$

Mode-Sum Representation

- Normal modes form a complete basis [Chandrasekhar, *Astrophys. J.* **139**, 664 (1964)],

$$\xi(t, \mathbf{x}) = \sum_{\alpha} q_{\alpha}(t) \xi_{\alpha}(\mathbf{x}), \quad \mathbf{C}(\mathbf{x}) \cdot \xi_{\alpha}(\mathbf{x}) = \omega_{\alpha}^2 \xi_{\alpha}(\mathbf{x})$$

- The tidal equation of motion simplifies to

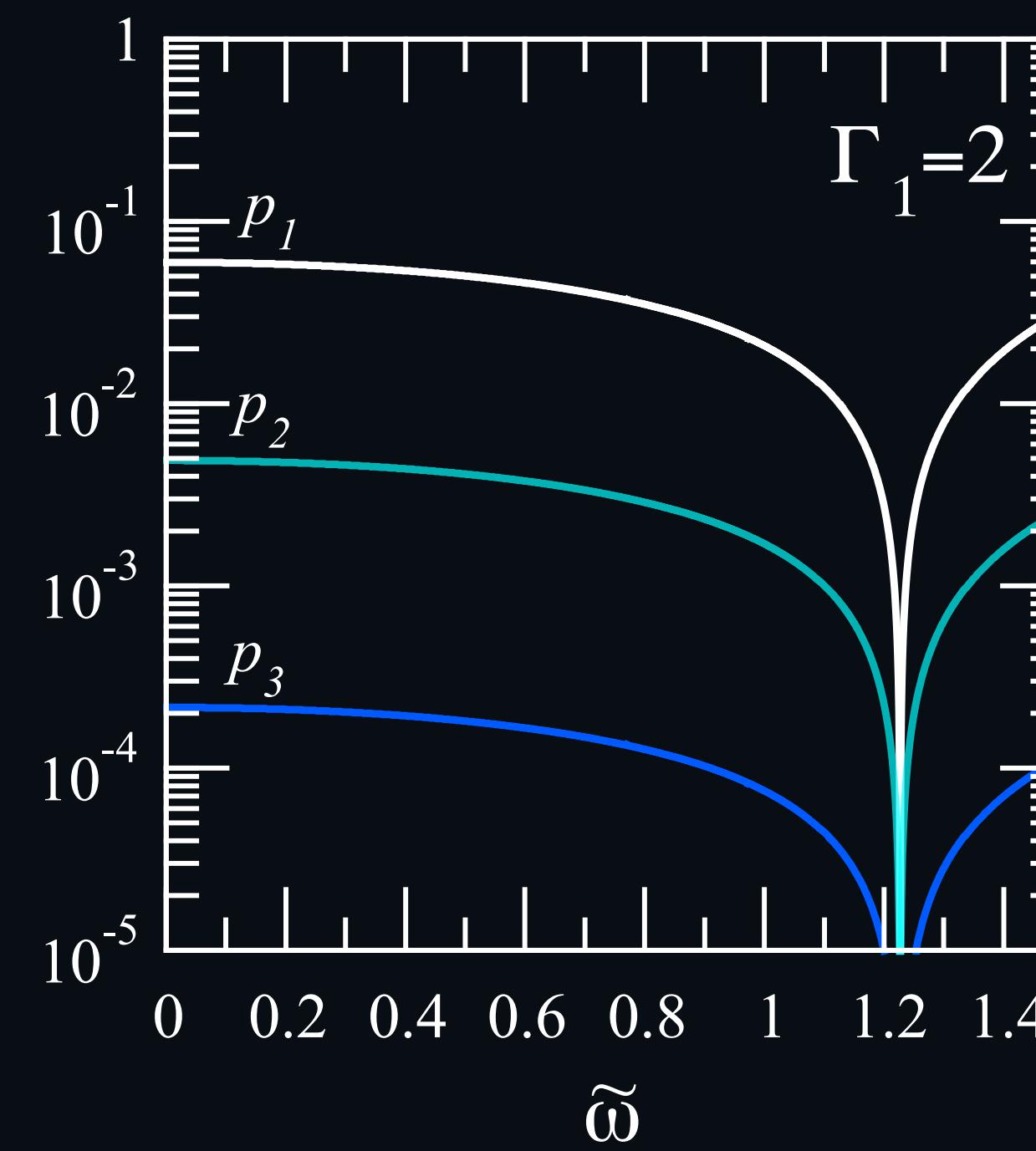
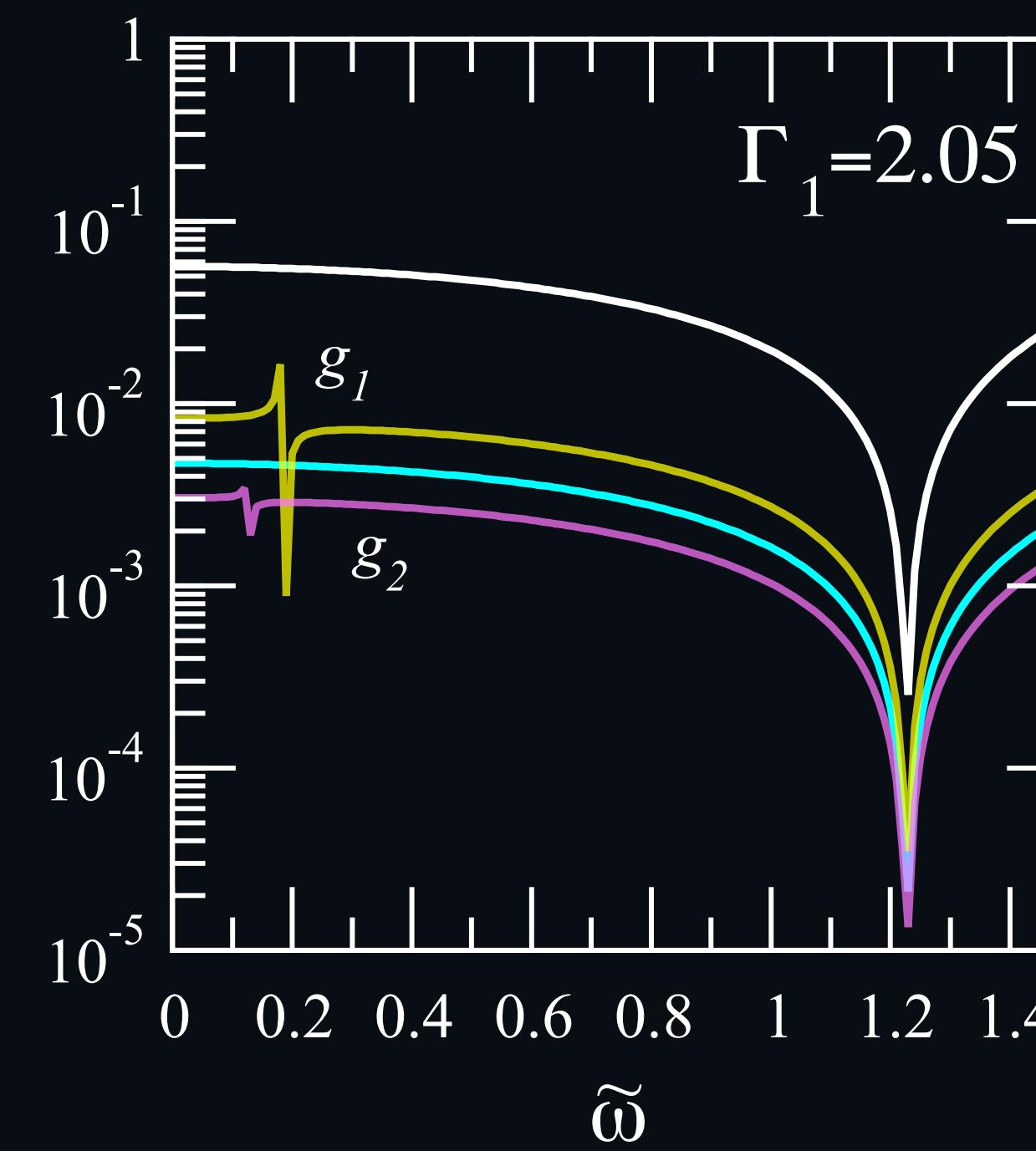
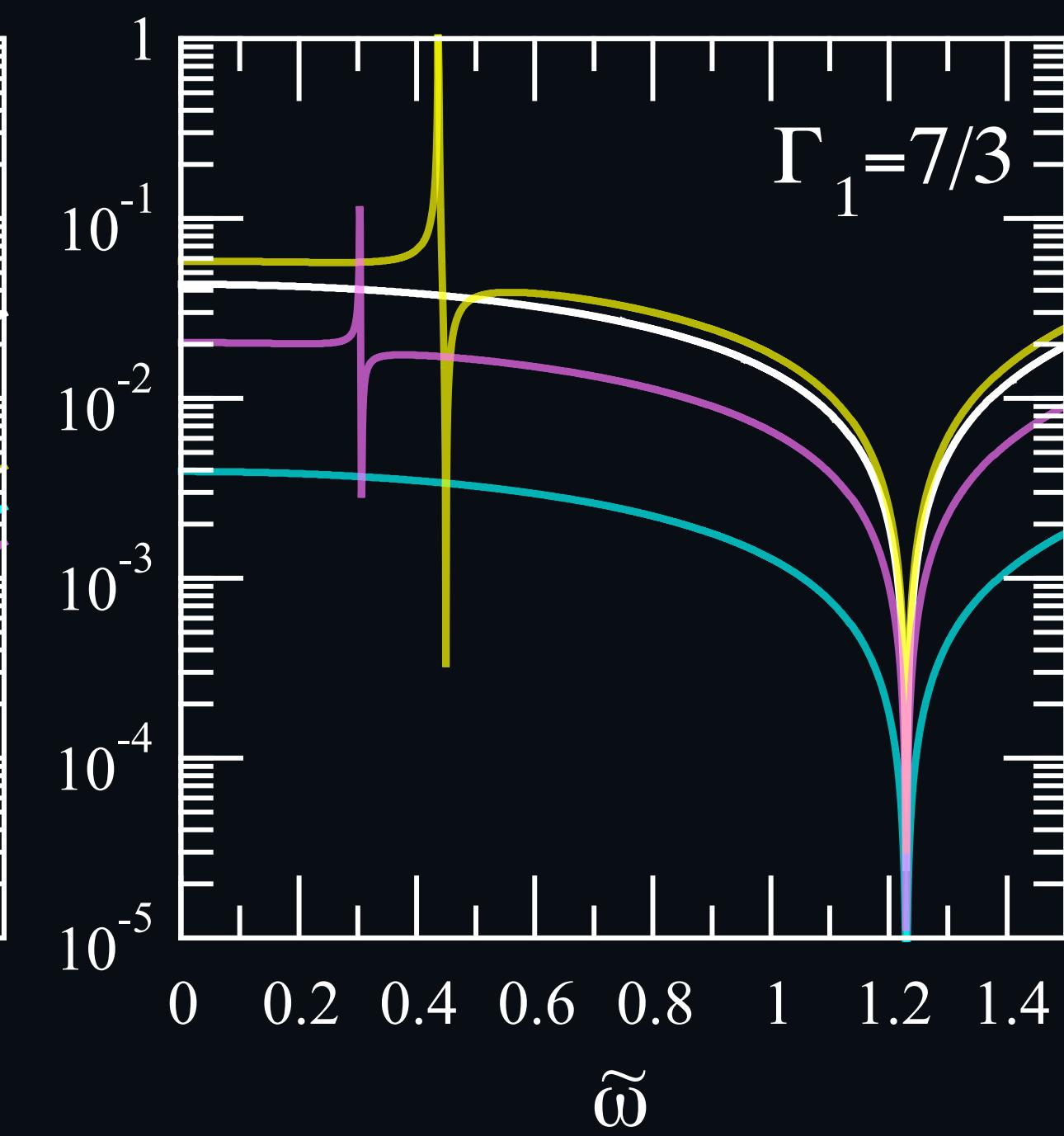
$$\ddot{q}_{\alpha}(t) + \omega_{\alpha}^2 q_{\alpha}(t) = \frac{Q_{\alpha}(t)}{\mathcal{E}_{\alpha}} \propto e^{-im\Phi(t)}$$

- **Challenge:** Can this be formulated in general relativity?

Equilibrium Tide

- For an equilibrium orbit, $\dot{\Phi} = \text{const}$,

$$q_\alpha(t) = \frac{Q_\alpha(t)}{\mathcal{E}_\alpha} \frac{1}{\omega_\alpha^2 - (m\dot{\Phi})^2}$$



Static Limit

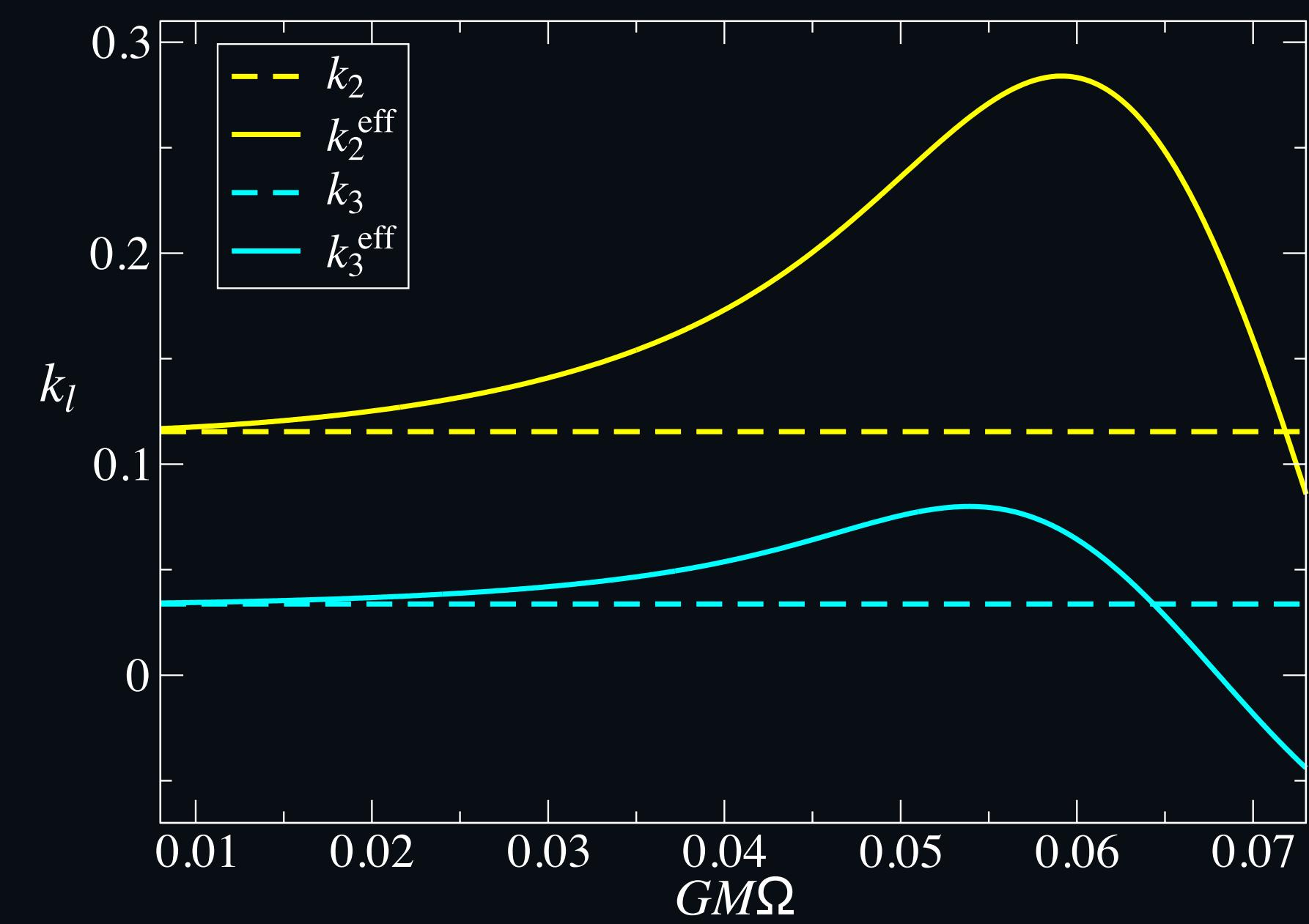
- In the static limit, $\dot{\Phi} = 0$,

$$q_\alpha = \frac{Q_\alpha}{\mathcal{E}_\alpha} \frac{1}{\omega_\alpha^2}$$

$\Gamma_1 = 2$		$\Gamma_1 = 2.05$		$\Gamma_1 = 7/3$	
Mode	k_l	Mode	k_l	Mode	k_l
f	0.27528	f	0.27055	f	0.24685
$+p_1$	0.25887	$+p_1$	0.25526	$+g_1$	0.26115
$+p_2$	0.26021	$+p_2$	0.25653	$+p_1$	0.25052
$+p_3$	0.26015	$+g_1$	0.25878	$+g_2$	0.25556
		$+g_2$	0.25960	$+p_2$	0.25653
		$+g_3$	0.25993	$+g_3$	0.25856
		$+g_4$	0.26008	$+g_4$	0.25944
				$+g_5$	0.25983
9×10^{-4}		7×10^{-4}		3×10^{-4}	

f-mode Approximation

- The dynamical tide is dominated by the *f*-mode
- There have been models developed for the *f*-mode dynamical tide that use
 - *effective-one-body* [Steinhoff+, Phys. Rev. D **94**, 104028 (2016)],
 - *Newtonian* [Schmidt+Hinderer, Phys. Rev. D **100**, 021501 (2019)] and
 - *phenomenological* approaches [Abac+, Phys. Rev. D **109**, 024062 (2024)]



Sub-Dominant Modes

- Low-frequency modes (including *g*-modes, *r*-modes and *i*-modes) will become **resonant** during inspiral,

$$q_\alpha(t) = \frac{Q_\alpha(t)}{\mathcal{E}_\alpha} \frac{1}{\omega_\alpha^2 - (m\dot{\Phi})^2} \quad \Rightarrow \quad |m|\dot{\Phi} \approx \omega_\alpha$$

- Energy is extracted from the orbit,

$$\Delta E_\alpha \sim |q_\alpha|^2,$$

which results in a phase shift $\Delta\Phi$

Composition

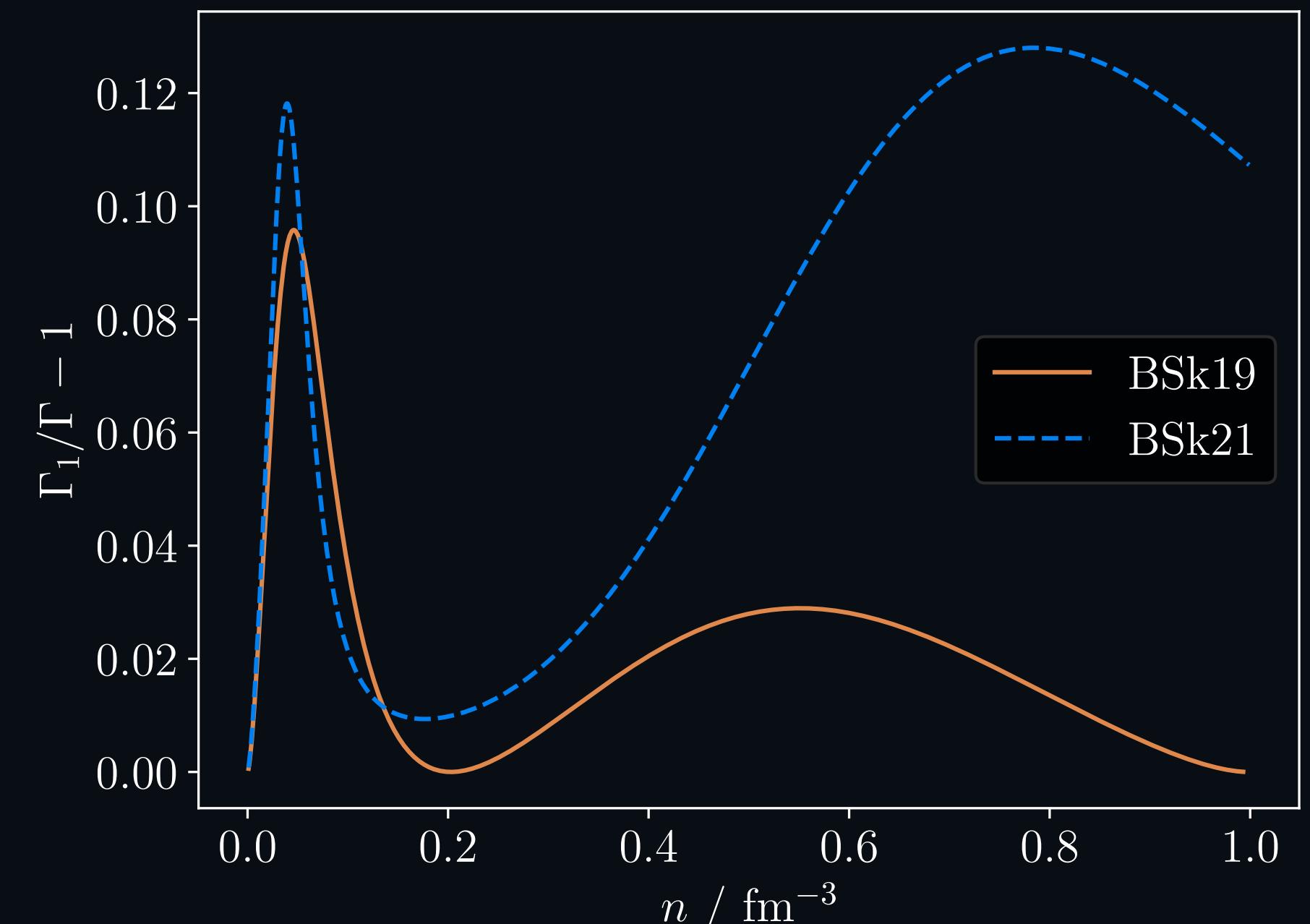
- Instead of

$$d\varepsilon = \frac{\varepsilon + p}{n_b} dn_b \implies \varepsilon = \varepsilon(n_b),$$

the first law is

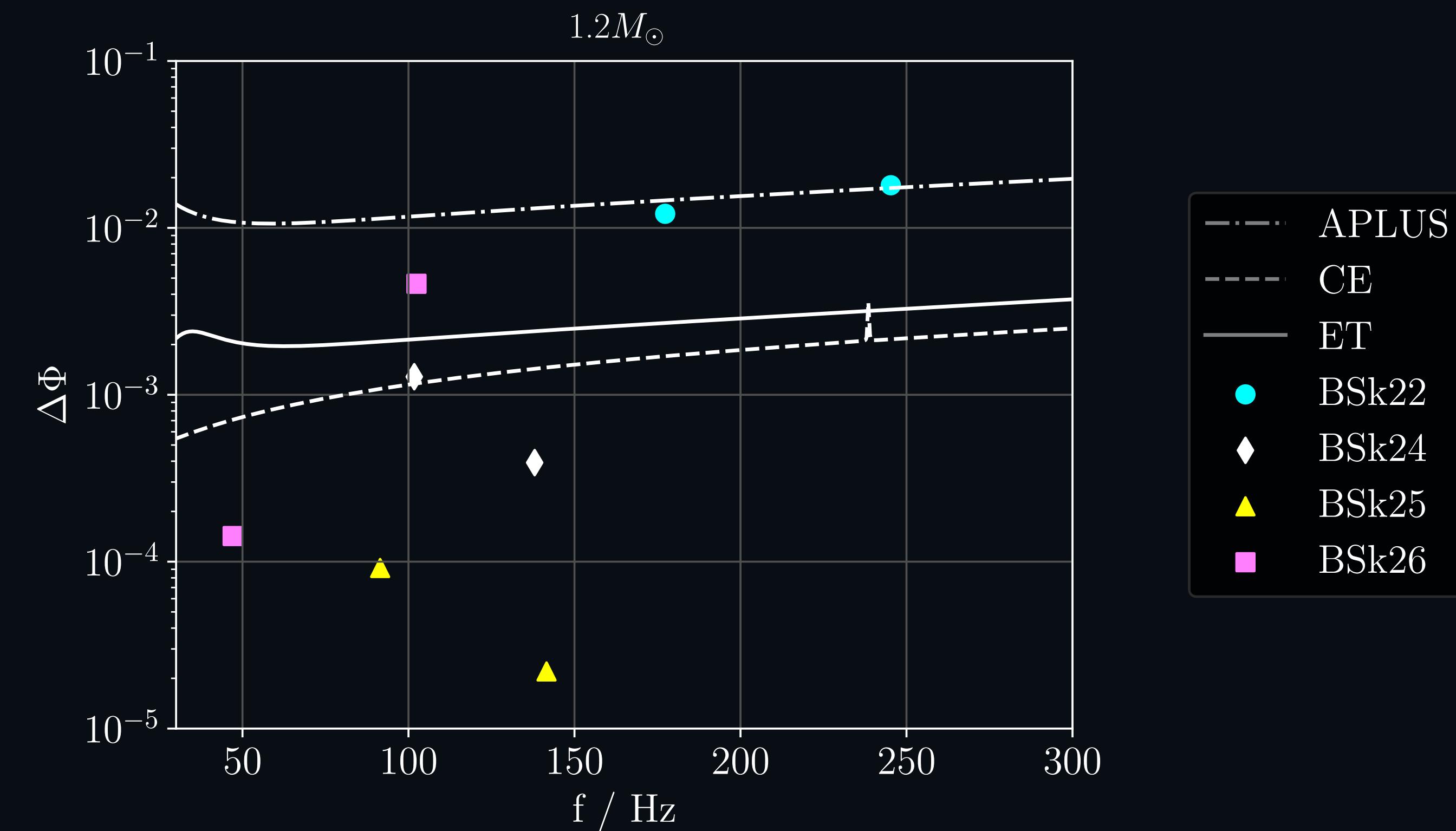
$$d\varepsilon = \frac{\varepsilon + p}{n_b} dn_b + n_b \mu_\Delta dY_e \implies \varepsilon = \varepsilon(n_b, Y_e)$$

- When there are slow weak nuclear reactions,
 $\mu_\Delta \neq 0$



[FG + Andersson, Mon. Not. R. Astron. Soc. **521**,
3043 (2023)]

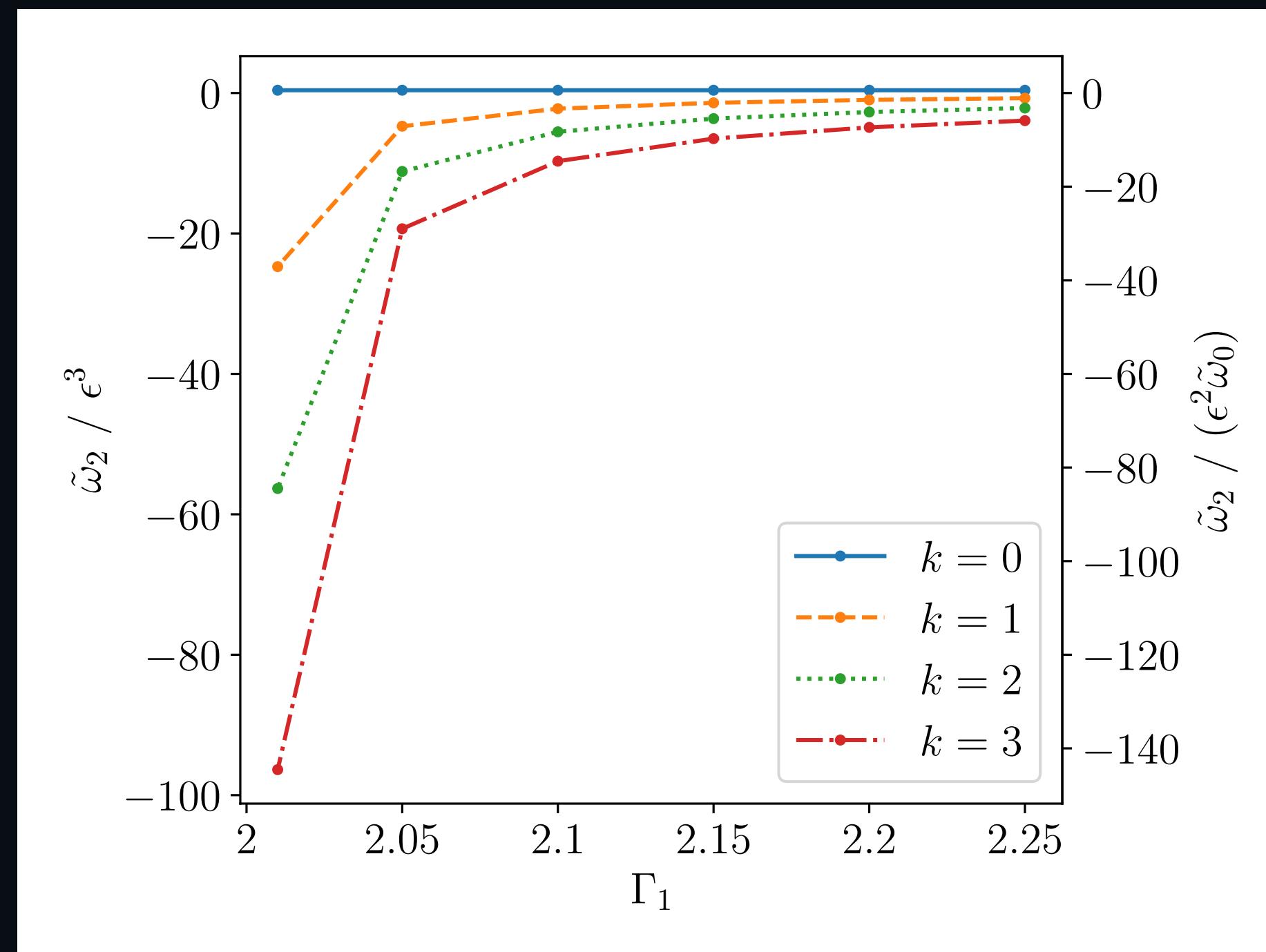
g-modes



[Counsell, FG + Andersson, Mon. Not. R. Astron. Soc. **536**, 1967 (2025)]

Rotation

- A special class of inertial modes have *axial* parity: the *r*-modes
- The *r*-modes are famous for their gravitational-wave-driven instability
- They also probe composition gradients



r-modes

- The *r*-mode couples strongly to the gravito-magnetic tide
- Estimates give [Flanagan+Racine, Phys. Rev. D **75**, 044001 (2007)]

$$\Delta\Phi \approx -0.03 \left(\frac{R}{10 \text{ km}} \right)^4 \left(\frac{f_{\text{spin}}}{100 \text{ Hz}} \right)^{2/3} \left(\frac{1.4M_{\odot}}{M} \right)^{10/3}$$

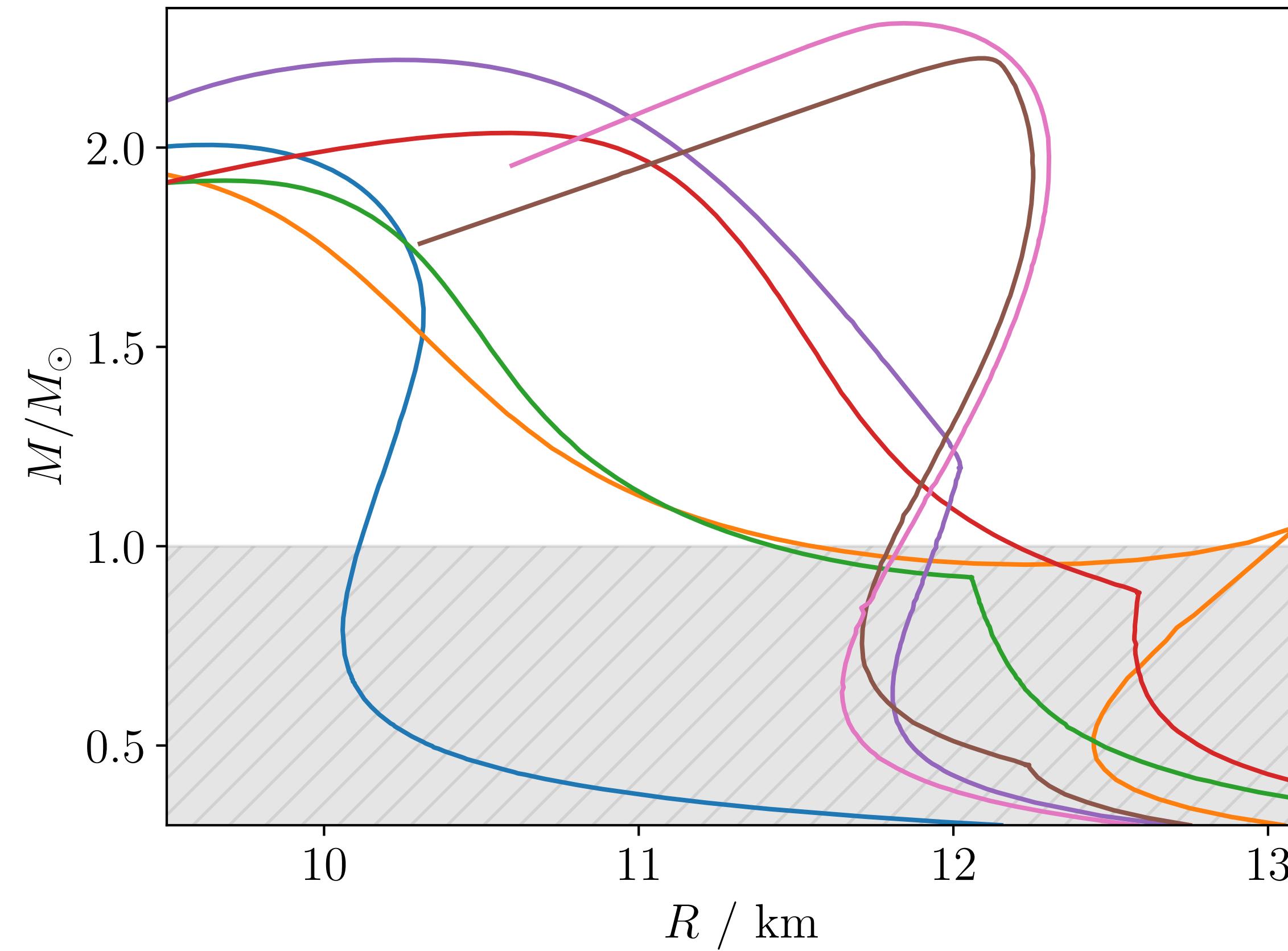
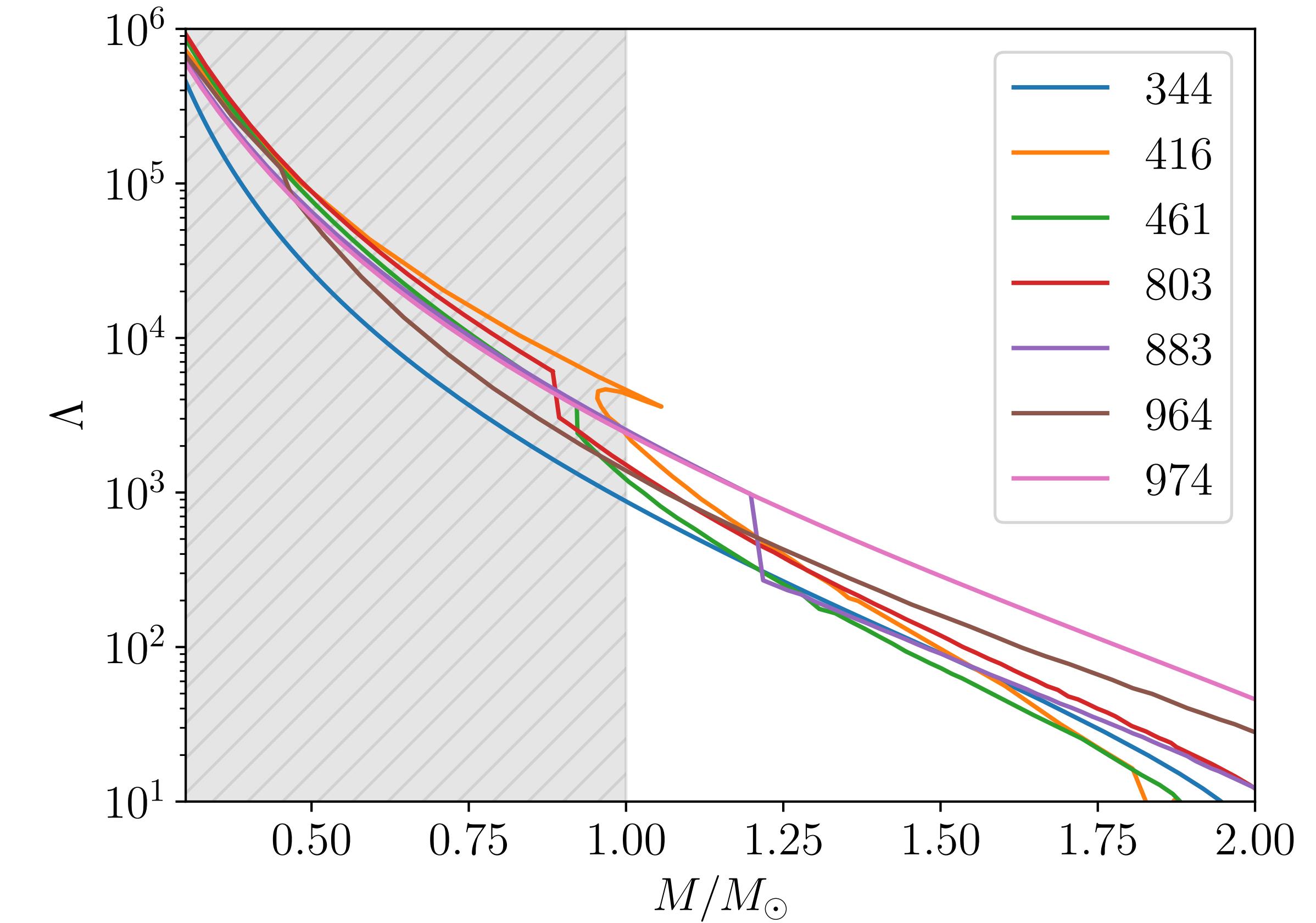
Phase Transitions



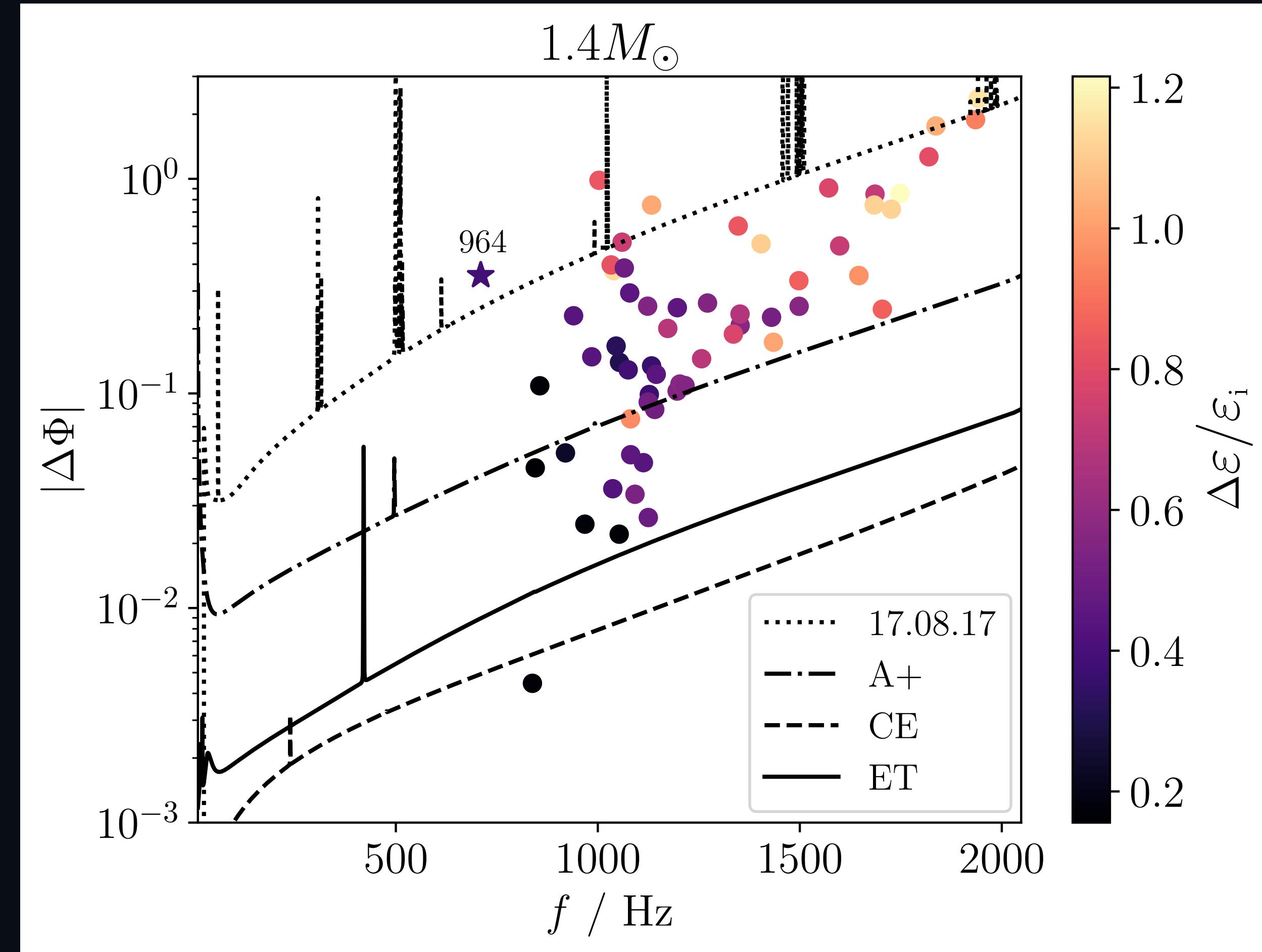
[Tsang+, Phys. Rev. Lett. **108**, 011102 (2012)]

- The interfacial i -mode arises when there is a first-order phase transition in the star
- This may occur at the core-crust interface or (possibly) at a transition to deconfined quark matter in the core

Masquerade Problem



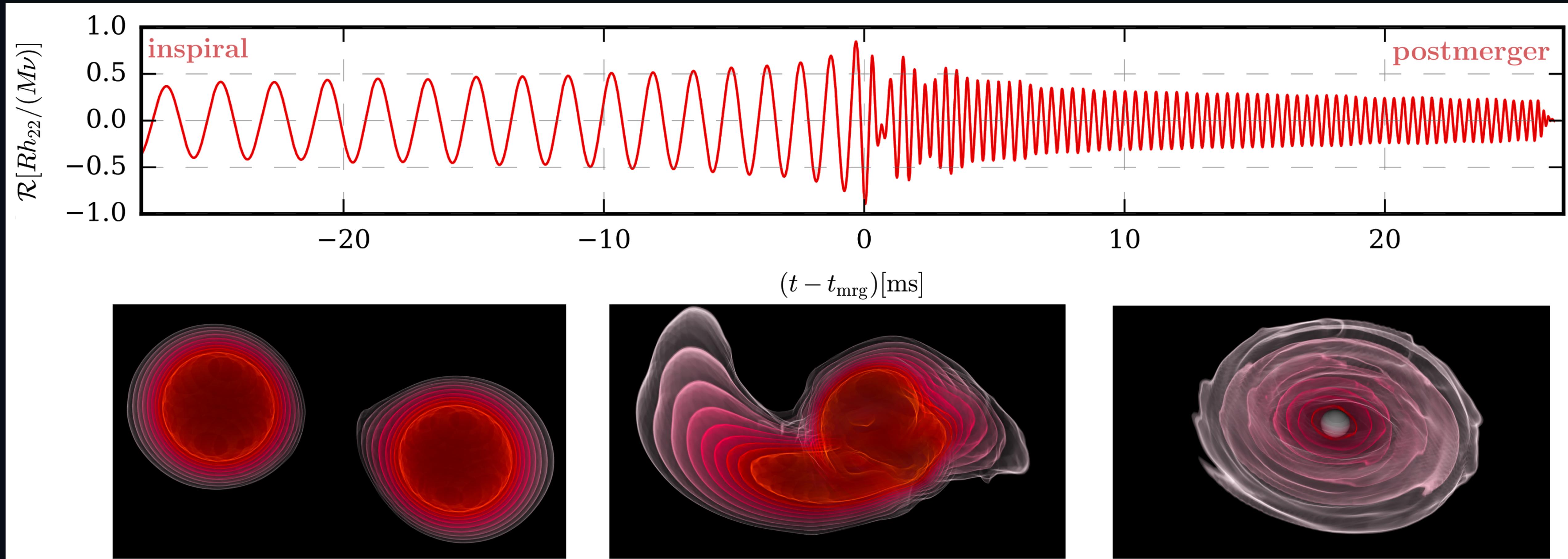
i-modes



[Counsell, FG+, Phys. Rev. Lett. **135**, 081402 (2025)]

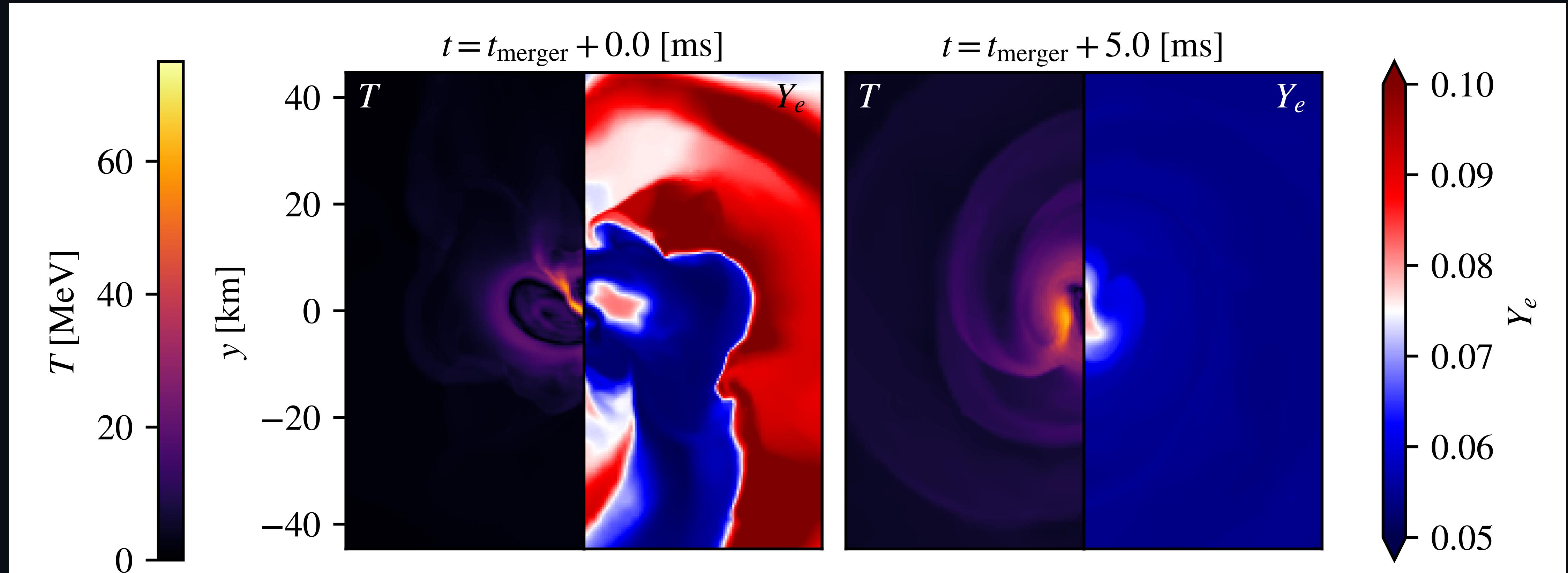
- **Challenge:** Develop models of this resonant behaviour

Role of Simulations



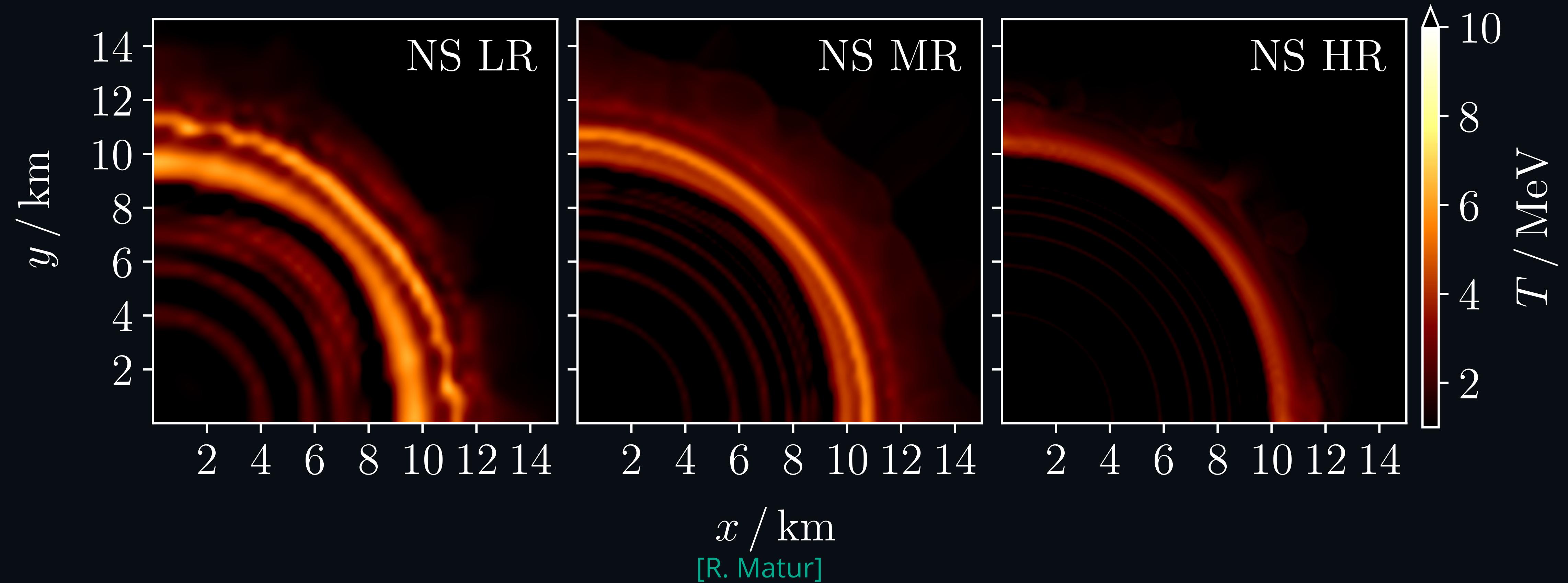
[Dietrich+, Gen. Relativ. Gravit. **53**, 27 (2021)]

Way too hot!

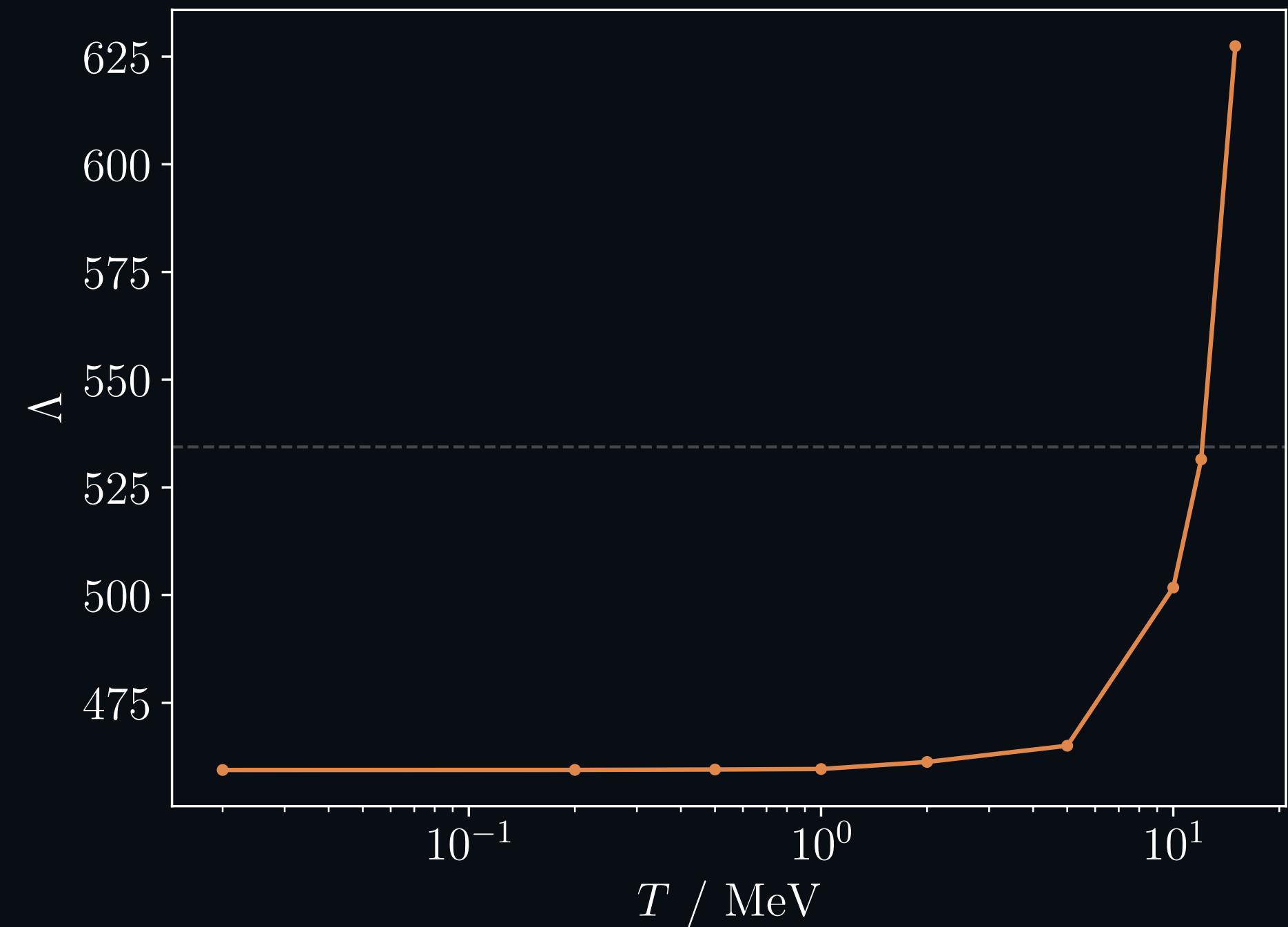
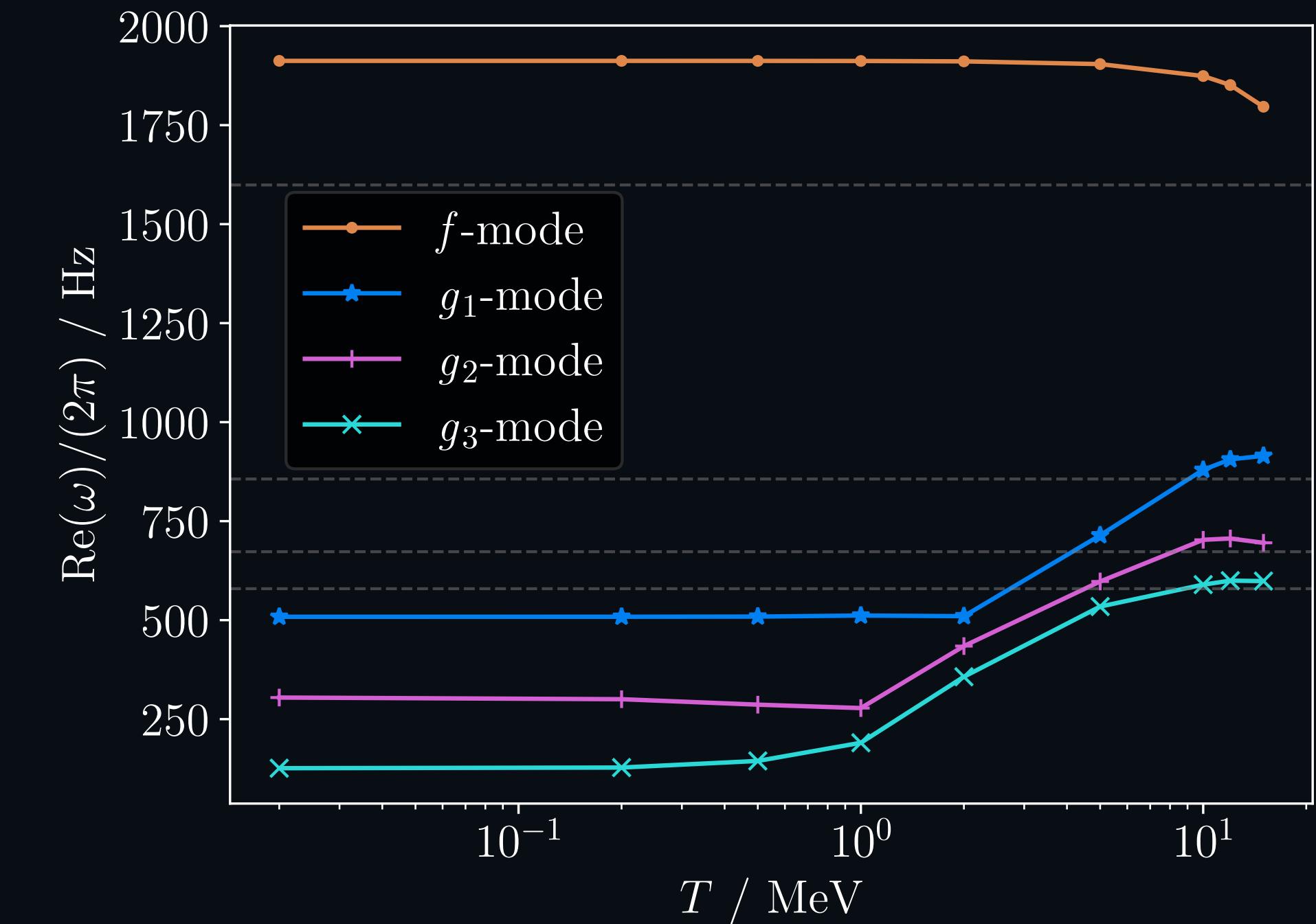


[Hammond+, Phys. Rev. D. **104**, 103006 (2021)]

Way too hot!



Tidal Systematics



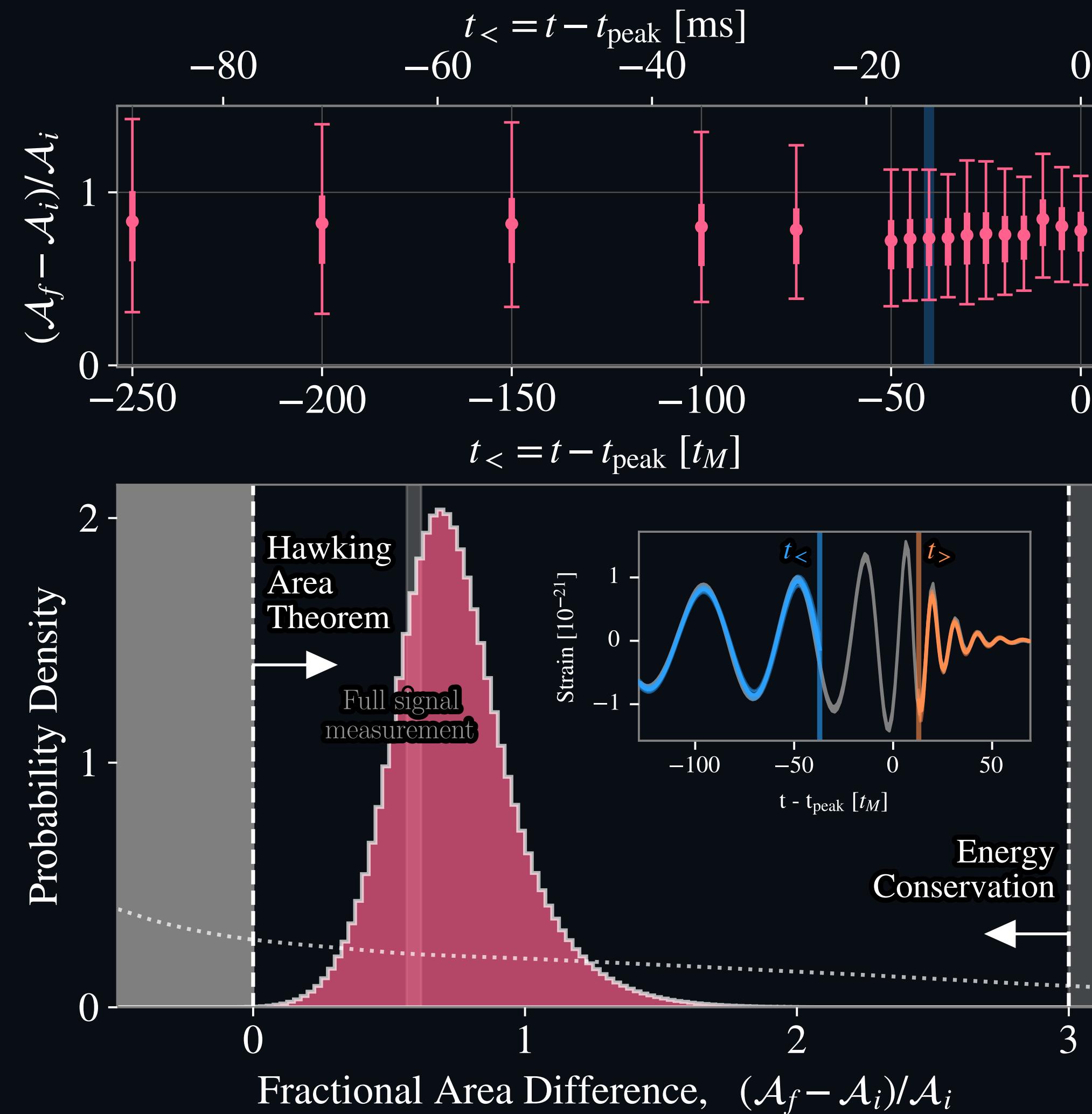
[FG+, Phys. Rev. D. **104**, 103006 (2021)]

Conclusions

Opportunities	Challenges
Gravitational waves probe dense nuclear matter by encoding fine tidal deformations	Can the mode-sum be formulated in general relativity?
The tide presents the opportunity to conduct neutron-star seismology	Go beyond universal relations in inference
Oscillation modes grant access to rich physics: composition and phase transitions	Develop gravitational-waveform models of resonant oscillation modes

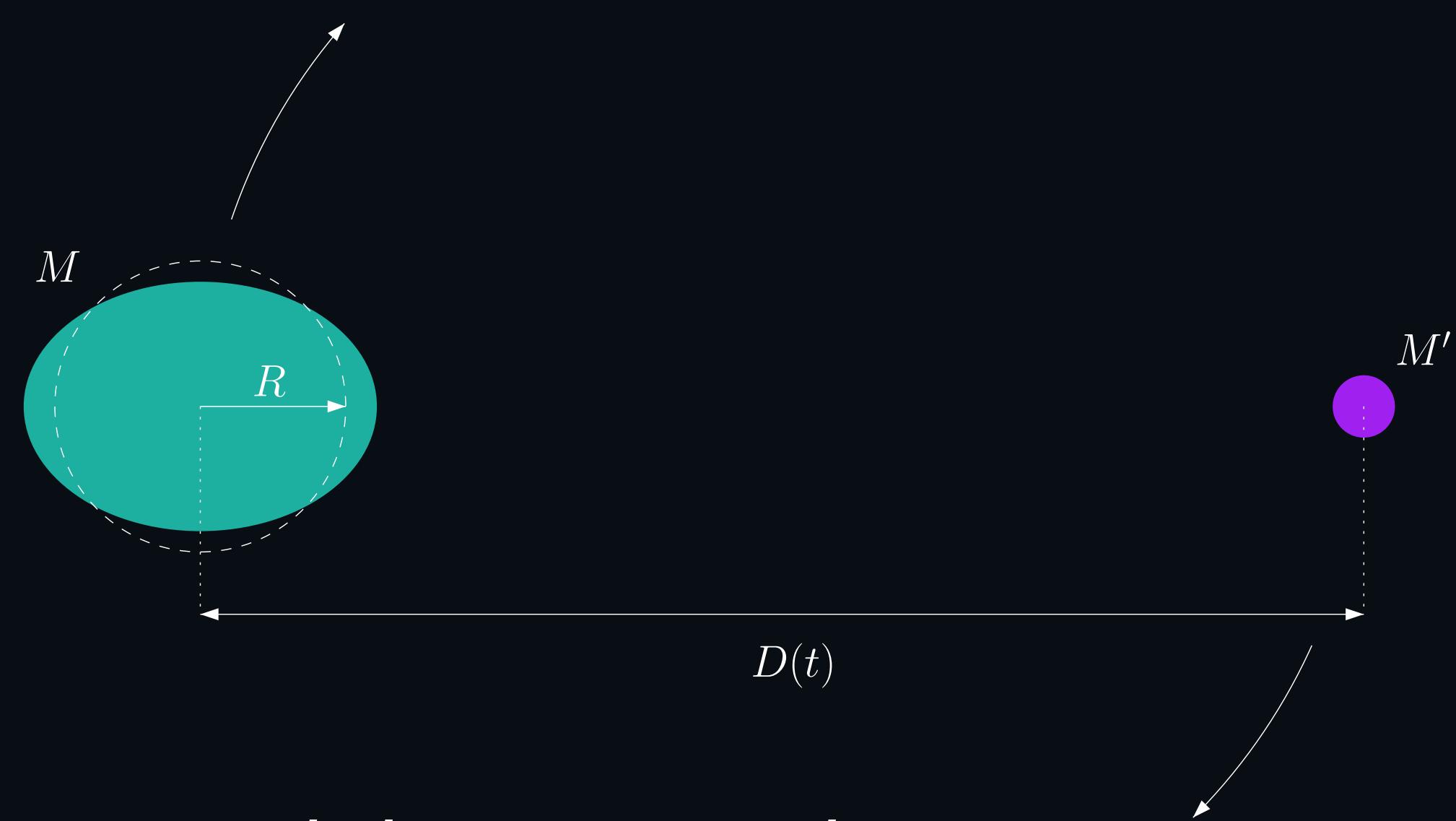
Extra slides

Black-Hole Spectroscopy: GW250114



$$\mathcal{A}(M, \chi) = 8\pi \left(\frac{GM}{c^2} \right)^2 \left(1 + \sqrt{1 - \chi^2} \right)$$

Static Tide



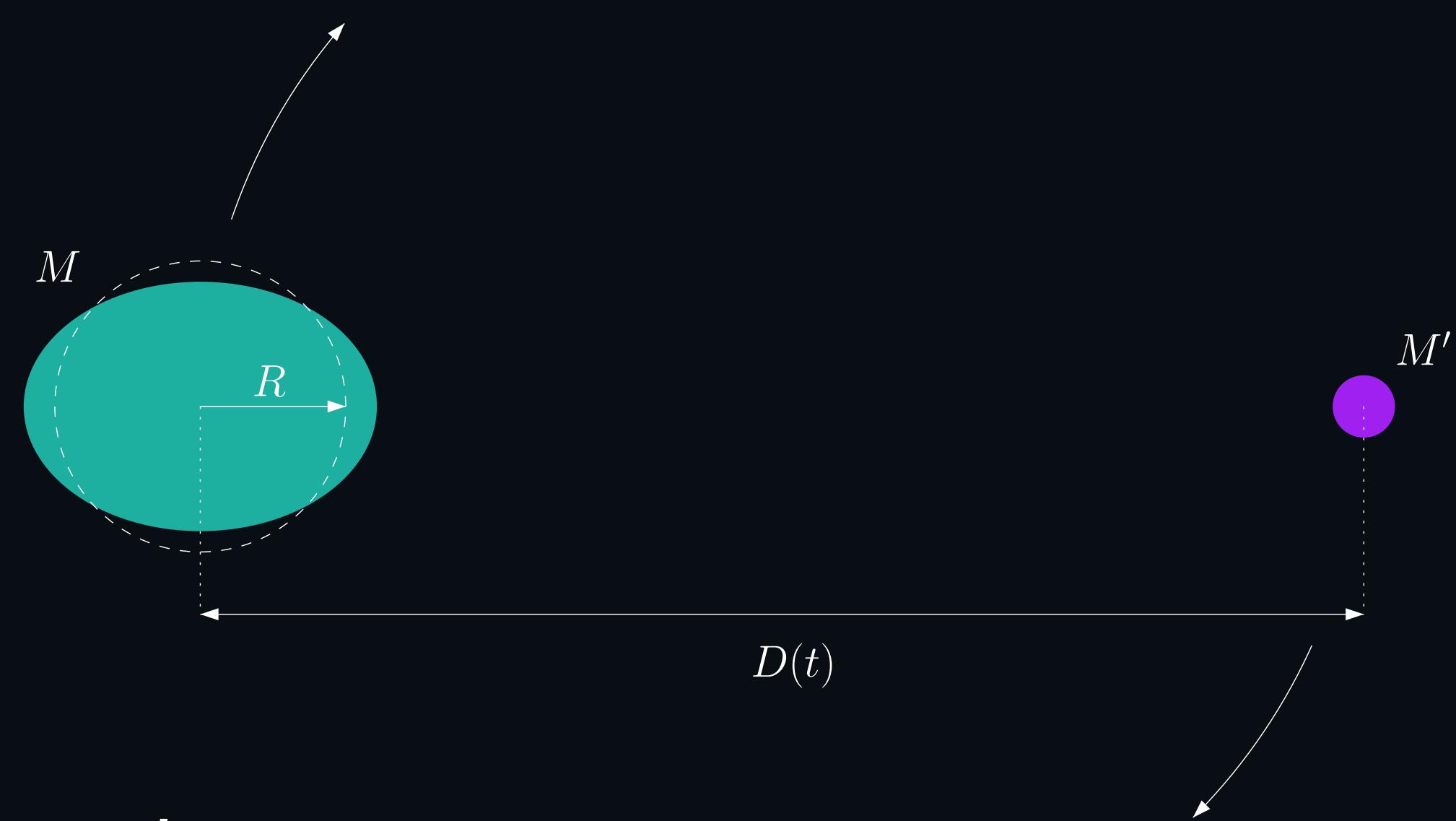
- Star's (static) shape is quantified by its *tidal Love numbers* k_l ,

$$U_l(r) = \left[2k_l \left(\frac{R}{r} \right)^{l+1} + \left(\frac{r}{R} \right)^l \right] \chi_l(R),$$

where

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dU_l}{dr} \right) - \frac{l(l+1)}{r^2} U_l = - \frac{4\pi G \rho}{dp/d\rho} U_l$$

Static Tide



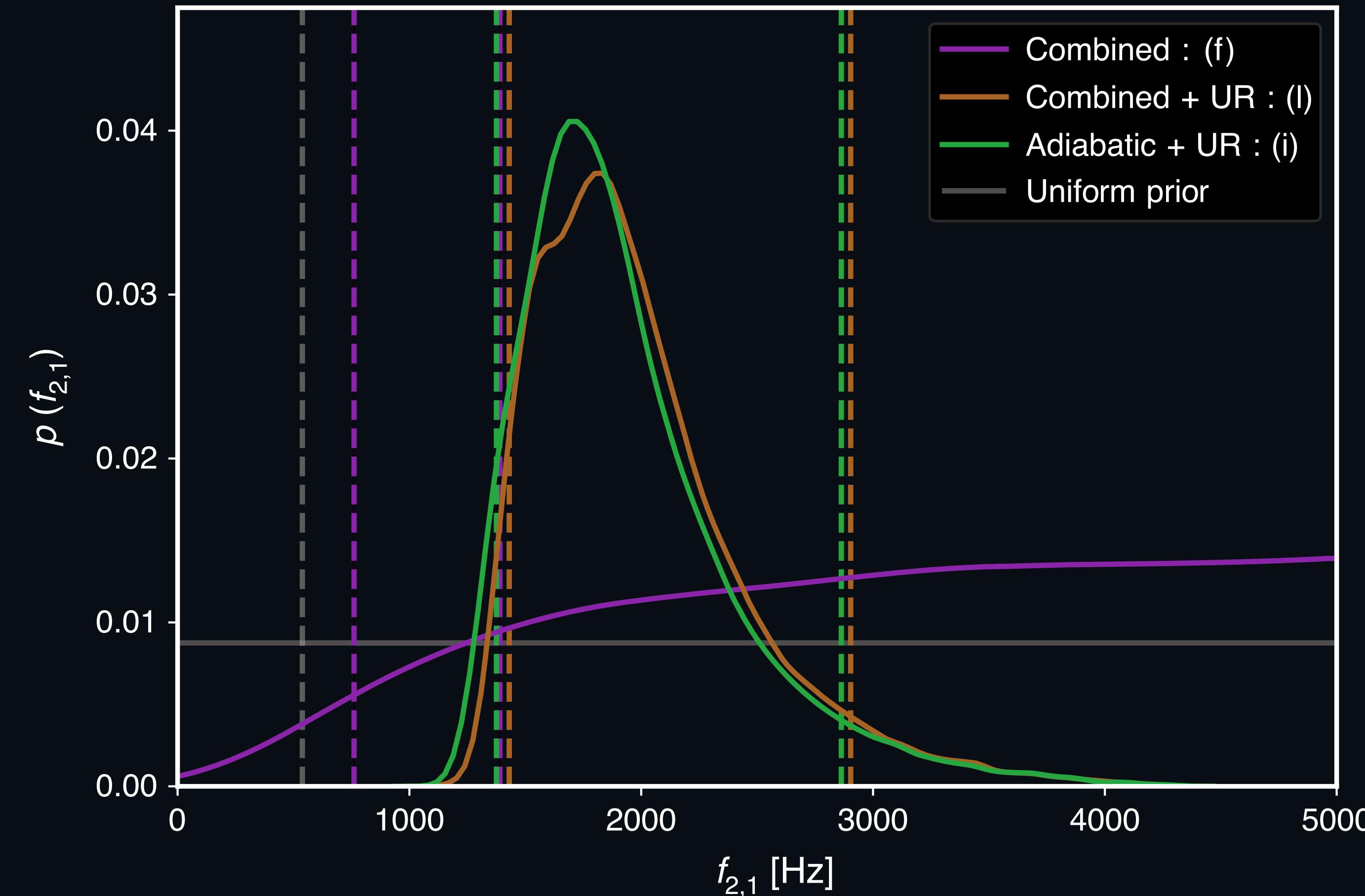
- Tide enters the gravitational-wave phase as [Flanagan+Hinderer, Phys. Rev. D **77**, 021502 (2008)]

$$\Psi_{\text{tide}}(\nu) = -\frac{3}{128} \frac{M_{\text{total}}}{\mu} \frac{1}{\nu^5} \cdot \left[\frac{39}{2} \tilde{\Lambda} \nu^{10} + O(\nu^2) \right],$$

where

$$\tilde{\Lambda} = \frac{16}{13} \frac{1}{M_{\text{total}}} \left[(M + 12M')M^4 \Lambda + (M' + 12M)M'^4 \Lambda' \right], \quad \Lambda = \frac{2}{3} \left(\frac{c^2 R}{GM} \right)^5 k_2$$

Towards Asteroseismology



[Pratten+, Nat. Commun. **11**, 2553 (2020)]

Biases

