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Overview

o Gravitational waves probe nuclear physics through observations of neutron
stars

o [idal dynamics present opportunity to conduct asteroseismology
* Neutron-star oscillation modes are notably rich

. and ahead



Quantum Chromodynamlcs (QCD)

Lattice QCD
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Physics of Neutron Stars

e Neutron stars are extreme laboratories

- Strong-field gravity Thin atmosphere

H,He, C.... wlr Quter crust: ions, electrons

Inner crust: ion lattice, soaked
O in superfluid neutrons (SFn)

- Dense nuclear matter e \ Outer core liquid: e, jr", SF,

superconducting protons

& 0\ \Inner core: unknown

- Rapid rotation

s ‘j i E | ~101Sgcm—3

- Strong magnetic fields - T ~ixnudeardensiy

2x10% g cm™

~nuclear density

- Superfluidity ZEis

NE2052 N “neutron drip”

- Solid crusts

» Each of these aspects give rise to their own family of oscillation modes



Neutron-Star Mode Compendium

e f-mode: scales with average density

p-modes: sound waves in the star (overtones of the [~-mode)
g-modes: buoyancy waves from thermal/composition gradients
inertial modes (including r-modes): associated with rotation
-modes: arise from phase transitions

Also:

- w-modes, s-modes, Alfven modes, ...

(I,m) = (3,2)



Matter Effects

* Consider two compact binaries: one with black holes, while the other
comprises neutron stars

* The binaries are otherwise identical; same component masses, spins, binary
orientation and position with respect to the detectors

™\ black holes

gravitational-wave strain




Static Tide
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D(t)
¢ Assumptions: /

- Components are well separated, e = (M'/M)(R/D)’ < 1

- The orbital frequency is slow, 1 = ®/w, < 1



Matter Constraints: GW170817 & GW190425
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[LIGO-Virgo Collaboration, Phys. Rev. X9, 011001 (2019)] [LIGO-Virgo Collaboration, Astrophys. J. 892, L3 (2020)]

= Provided the function p = p(p), one can solve for M and A



Static Tide
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D(t)
¢ Assumptions: /

- Components are well separated, e = (M'/M)(R/D)’ < 1

- The orbital frequency is slow, 1 = ®/w, < 1



Dynamical Tide
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D(t)
¢ Assumptions: /

- Components are well separated, e = (M'/M)(R/D)’ < 1

— AVYAYNN a a AavYa ala FLA — ]



Inspiral

: Nonalized amplijude . * The static approximation inevitably breaks down,
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[LIGO-Virgo Collaboration+, Phys. Rev. Lett. 119, 161101 (2017)]



Mode-Sum Representation

* Normal modes form a complete basis (chandrasekhar, Astrophys. J. 139, 664 (1964)),

E.X) = ) q,(0E(X), CX) - Ex) =0 E,(x)

* The tidal equation of motion simplifies to

Q,(1)
X
&y

—imdD(7)

G, (D)+w; g (1) = %

. . Can this be formulated in general relativity?



Equilibrium Tide

* For an equilibrium orbit, ® = const,
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[Andersson+Pnigouras, Phys. Rev. D 101, 083001 (2020)]



Static Limit

e |n the static limit, ® = 0,
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[Andersson+Pnigouras, Phys. Rev. D 101, 083001 (2020)]



f-mode Approximation

* The dynamical tide is dominated by the f-mode

e There have been models developed for the /-
mode dynamical tide that use

0.3

0.2

- effective-one-body [stcinhoff+, Phys. Rev. D 94, 104028 (2016)],
ki

0.1

- Newtonian [Schmidt+Hinderer, Phys. Rev. D 100, 021501 (2019)]
and

- phenomeno/ogica/ approaches [Abac+, Phys. Rev. D (_).01 7002 003 004 005 006 0.07_
109, 024062 (2024)]



Sub-Dominant Modes

* Low-frequency modes (including g-modes, r-modes and /-modes) will
become resonant during inspiral,
Q,(1) 1

(1) = : = | m | D ~ @,
! %a a)g—(m(l))z

* Energy is extracted from the orbit,
AE, ~ |q,]",

which results in a phase shift A®



Composition

* |nstead of
E +
de = pdnb —> & = 8(nb), 0.12-
My,
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g-modes
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[Counsell, FG + Andersson, Mon. Not. R. Astron. Soc. 536, 1967 (2025)]



Rotation

* A special class of inertial modes have axial parity: the
* The are famous for their gravitational-wave-driven instability

* They also probe composition gradients

0
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r-modes

* The r-mode couples strongly to the gravito-magnetic tide

* Estimates give [rlanagan+Racine, Phys. Rev. D 75, 044001 (2007)]
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Phase Transitions
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[Tsang+, Phys. Rev. Lett. 108, 011102 (2012)]

* The interfacial i-mode arises when there is a first-order phase transition in
the star

* This may occur at the core-crust interface or (possibly) at a transition to
deconfined quark matter in the core



Masquerade Problem
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I-modes

500 1000 1500 2000
f/ Hz

. . Develop models of this resonant behaviour



Role of Simulations
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Way too hot!

I = tmerger + 0.0 [ms] I = tmerger + 3.0 [mS]




Way too hot!
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Tidal Systematics
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Conclusions

Gravitational waves probe dense nuclear matter
by encoding fine tidal deformations

Can the mode-sum be formulated in general
relativity?

The tide presents the opportunity to conduct
neutron-star seismology

Go beyond universal relations in inference

Oscillation modes grant access to rich physics:
composition and phase transitions

Develop gravitational-waveform models of
resonant oscillation modes
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Black-Hole Spectroscopy: GW250114
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Static Tide /
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o Star's (static) shape is quantified by its tidal Love numbers F,
R [+1 ” [
U(r) = |2k (—) + (—) Xi(R),
r R
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Static Tide /

. M’
- -
D(t) /

* Tide enters the gravitational-wave phase as rlanagan+Hinderer, Phys. Rev. D 77, 021502
(2008)]
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Towards Asteroseismology
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Bilases
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