CONSTRAINING DENSE
NUCLEAR MATTER WITH
GRAVITATIONAL WAVES

[credit; MIT]

Fabian Gittins
Gravitational-wave group, University of Portsmouth

14 Dec. 2023

@'33@ University of
\&/Southampton STAG. Zr-..



oravitational waves: observations

Since 2015, gravitational-wave instruments have witnessed over
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* On 17 Aug. 2017, gravitational-wave instruments
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[Abbott+ 2017, Phys. Rev. Lett. 119, 161101]
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science potential of neutron-star binaries
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neutron-star binaries

* The signal emitted from inspiralling neutron stars differs to that of black

holes

* These features enter the waveform phase ¥ at 5pN.

* The deformability of the stellar material is characterised by the tidal Love

numbers k, which depend on the state of the nuclear matter.

no tides
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the static tide

We start by assuming that the external field is static,
m¥ <

The tidal Love numbers k, are defined at the surface of the neutron star r = R
Dy

SOR,0.4) = ¥ 5B(R) Y'(O.4) = . 2k 1(R) Y['(0. §).
[,m [,m

Therefore, they can be ,

R 21+1 ” [
r

This result generalises to relativity, where the potential U is promoted to the
(linearised) metric of the spacetime ;.



state of play

Newtonian gravity

general relativity

notes

static tide

non-rotating
stars

[Hinderer 2008;
Binnington+Poisson 2009;
Damour+Nagar 2009]

Relativistic neutron-star models with
elastic crusts [Gittins+ 2020] and
superfluidity [Yeung+ 2021].

rotating stars

[Landry+Poisson 2015;
Landry 2015;
Pani+ 2015a,b]

Calculations are at the level of slowly
rotating fluid bodies.




equation-of-state constraints
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[Abbott+ 2019, Phys. Rev. X9, 011001] [Raaijmakers+ 2021, Astrophys. J. 918, L29]



the dynamical tide

e However,

 As the compact objects inspiral, the tidal frequency increases and
eventually becomes comparable to the neutron star's natural modes of
oscillation,

m¥Y ~ w,.

* This regime is known as the dynamical tide and it has the exciting potential
to probe the oscillation spectrum.

[credit: D. Guenther]

([,m) = (3,0) ([,m)=(3,1) ([,m)=(3,2) ([,m)=(3,3)



(some of) the modes

e f-modes: Fundamental oscillations of the star; scale
with the average density,  /(2x) ~\/GM/R> ~ 1kHz.

e g-modes: Restored by buoyancy that arises from
composition gradients; w,/(2x) ~ 100 Hz.

e inertial modes (including the r-mode). Restored by
rotation; primarily excited by the gravitomagnetic tide
(a relativistic effect) [Flanagan+Racine 2007]; w, ~ Q.

e ;-modes: Oscillations that arise due to the core-crust

interface; with short gamma-ray credit: C. Hanna+B. Owen!
bursts [Tsang+ 2012]; w,/(27) ~ 100 Hz.

* The natural oscillation modes depend on the nuclear-
matter equation of state.



the mode-sum

 The normal modes form a complete basis [Chandrasekhar 1964, Astrophys. J. 139,
664], such that the tidal response of the star can be decomposed as

E1,X) = ) g (DEMX).

* Thus, the equation of motion becomes that of a driven harmonic oscillator,

d*q,
dt?

2 _ —imY¥Y
+w,q,=0, xe .

* At resonance m¥ = w,,
from the orbit. This will change the phase by

2
AY Iy AE, ( 0, )
~ X | — .

2r torb ‘ Eorb ‘




the Fmode approximation

0.3_| '''''''''''''

 There has been some work in representing the
dynamical tide using just the f-mode.

(i) Effective approach:

to relativity
[Steinhoff+ 2016, Phys. Rev. D 94, 104028; Schmidt+Hinderer

2019, Phys. Rev. D 100, 021501].

0.3

(i) Phnenomenological approach [Andersson+Pnigouras
2021, Mon. Not. R. Astron. Soc. 503, 533].

0.2
eff

 However, it seems they do not match results from «
numerical simulations [Gamba+Bernuzzi 2023, Phys. Rev. D

107, 044014]. 3
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state of play

Newtonian gravity

general relativity

notes

non-rotating
stars

[Hinderer 2008;

Binnington+Poisson 2009;

Relativistic neutron-star models with
elastic crusts [Gittins+ 2020] and

Damour+Nagar 2009] superfluidity [Yeung+ 2021].
static tide
: [Landry*Poisson 2015; Calculations are at the level of slowly
rotating stars Landry 2015; rotating fluid bodies
Pani+ 2015a,b] 5 ’
non-rotating [Lai 1994, | Newtpman neutron-star m.o.dels with
¢ Andersson+Pnigouras elastic crusts and superfluidity
. stars 2020 : ical tidal field? |[Passamonti+ 20211,
dynamical ] How to treat a Qynamlcal tidal field? |l ]
, * The modes are incomplete.
tide

rotating stars

[Ho+Lai 1999;
Pnigouras+ 2023.]

* Can we go beyond just the f-mode?

Planetary studies
[Lai 2021; Dewberry+Lai 2021].
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the g-modes

* The phase shifts are expected to be very
Mon. Not. R. Astron. Soc. 270, 611],

AY

27

* x—43%x1074

100 Hz

W,/ (21)

2

o

0.0003

[Lal 1994,

 But some recent work in light of third-generation
observatories (Cosmic Explorer and The Einstein
Telescope) are more optimistic [Ho+Andersson 2023, Phys.

Rev. D 108,

043003].

* Even without direct measurements of the g-modes,
the sensitivity improvements will place constraints on

properties of the nuclear matter.



sumimary

Gravitational waves carry information about the dense nuclear matter
inside neutron stars.

We understand the static tide well. However, this approximation will break
down during the inspiral.

The dynamical tide is less well-understood and much of our understanding
still relies on Newtonian gravity.

and the
resonances will hold information about the interior stellar physics. Third-
generation detectors will be more sensitive and may give us an
opportunity to see these effects.



