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the physics of neutron stars

* Neutron stars are among the most complex objects in the Universe.
* A realistic description of a neutron star will inevitably require

- general relativity

- strong magnetic fields
- superfluidity
- acrust

- thermal features




oravitational waves: observations

o Since 2015, gravitational-wave detectors have witnessed 90 compact-
binary coalescences — 2 neutron-star binaries and 3 neutron star-black
hole binaries.
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oravitational waves: GW170817

* On 17 Aug. 2017, gravitational-wave instruments detected the first
neutron-star merger.
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oravitational waves: GW170817
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https://www.youtube.com/watch?v=WoDCPTLgxh4
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- Known as a kilonova, explosions are a luminous flash of radioactive light
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neutron-star binaries

 The signal emitted from inspiralling neutron
stars differs from that of black holes due to the
material response to the tidal field.

* These features enter the waveform phase ¥ at
5PN through the induced quadrupole moment.

gravitational wave strain

 The deformability of the stellar material is i
characterised by the k. withtides o~~~ I
which depend on the interior composition and . fme

the equation of state.



/ the binary problem

D(t) /
o Assumptions:

1. The bodies are well separated, e = (M'/M)(R/D)’> <« 1. The problem can
be tackled . (In the final few orbits, this breaks down
completely and numerical relativity must be used.)

2. The external field due to the companion is slowly varying,
A =m¥/w, < 1. In this regime, the tidal field is static.

3. The deformed neutron star is non-rotating.



the static tide: Newtonian gravity

* The k, are defined at the surface of the star r = R by

SD(R,0.¢) = ) 5D(R) YO0.h) = ) 2k, 2(R) Y"(0. ) .
[.m I.m

* Therefore, they can be read off from the exterior,
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where the field satisfies
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* This result generalises to relativity, where the field U is promoted to the
(linearised) metric of the spacetime &,



the static tide: relativity

* |n general relativity, the response of the star is obtained from the exterior
behaviour of the metric, for example,

5
_E — l 2k, 5 B+ A, %-kxjxk + ...,
2 2 r /

where the functions A, and B, are determined from the Einstein field
equations.

 New Love numbers appear: the Love numbers and (when
the star’s spin is considered) the Love numbers.



the static tide: state of play

Newtonian gravity general relativity notes

[Hinderer 2008; Relativistic neutron-star models with
Binnington+Poisson 2009; |elastic crusts [Gittins+ 2020] and
Damour+Nagar 2009] superfluidity [Yeung+ 2021].

non-rotating
stars

static tide
[Landry+Poisson 2015;
Landry 2015;

Pani+ 2015a,b]

Calculations are at the level of slowly

rotating stars rotating fluid bodies.




equation-of-state constraints
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[Abbott+ 2019, Phys. Rev. X9, 011001] [Raaijmakers+ 2021, Astrophys. J. 918, L29]



the dynamical tide

» At this point, we want to relax the assumption of a static tidal field.

* As the compact objects inspiral, the tidal frequency increases such that it
eventually becomes comparable to the neutron star’s
, A=mWY/w, = 0().

o Additional assumption: We ignore dissipation completely and work in
Newtonian gravity.



the mode-sum: tformalism

e Neutron stars host a spectrum of oscillation modes. Formally, the normal
modes satisty an eigenvalue problem,

C-’g‘a=a)§‘g'a.

 The normal modes form a complete basis [Chandrasekhar 1964, Astrophys. J. 139,
664], such that a generic vector can be decomposed as

E(tX) = ) g (1) E,(X).

* The equation of motion 06+ C-E€=—-Vy becomes that of a

/

d an
dr?

2 _ —imY
+w,q9, =0, xe .



I'esSo1alce

* At resonance m¥ = w,, the mode will become excited and extract energy
from the orbit. This will change the phase by

2
AY Iy AE, ( O, )
~ — X | — .

i torb ‘ Eorb ‘ W

a

* The impact of a resonance on the phase on the overlap
0, of the mode and the tidal potential,

Qa - Jép&k%dv



(some of the) neutron-star modes

e f-modes: Fundamental oscillations of the star; scale with the average
density, o, /(2x) ~ \/GM/R3 ~ 1 kHz.

e p-modes: Restored by the pressure of the fluid; high frequencies above the
f-mode; with g-modes [Weinberg+ 2013].

e o-modes: Restored by buoyancy that arises from composition gradients;
low frequencies below the f-mode, o, /(27) ~ 100 Hz.

e inertial modes (including the r-mode). Restored by rotation; primarily
excited by the gravitomagnetic tide (a relativistic effect) [Flanagan+Racine 2007];

w, ~ L.

o i-modes: Oscillations that arise due to the core-crust interface:
with short gamma-ray bursts [Tsang+ 2012]; w,/(27) ~ 100 Hz.



 We expect the dynamical tide to be dominated by the

the mode-sum: application

, but it may

be possible to see resonances during the inspiral.
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Relative contributions to the tidal Love number &, compared to the f-mode.

[Andersson+Pnigouras 2020, Phys. Rev. D 101, 083001]



the Fmode: approximation

 There has been some work in representing the

dynamical tide using just the contribution from the f-
mode.

(i) Effective approach: generalising the Newtonian
action for the orbital dynamics to relativity in the
time domain [Steinhoff+ 2016, Phys. Rev. D 94, 104028]

and frequency domain [Schmidt+Hinderer 2019, Phys.
Rev. D 100, 021501]1.

(i) Phenomenological approach [Andersson+Pnigouras
2021, Mon. Not. R. Astron. Soc. 503, 533].
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the Fmode: results

* The effective approach has been used to constrain the [ = 2, 3 f~-mode frequencies
from the larger component of GW170817 [Pratten+ 2020, Nat. Commun. 11, 2553],

wsr/(27) 2 1.39 kHz, ws3/ (2m) 2 1.86 kHz .

* However, while these approaches are improved compared to the static tide, they
do not entirely match results from numerical simulations [Gamba+Bernuzzi 2023, Phys.
Rev. D 107, 044014].
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state of play

Newtonian gravity general relativity notes

[Hinderer 2008; Relativistic neutron-star models with

non-rotating . | . o
Binnington+Poisson 2009; |elastic crusts [Gittins+ 2020] and

stars Damour+Nagar 2009] superfluidity [Yeung+ 2021].
static tide
: [Landry*Poisson 2015; Calculations are at the level of slowly
rotating stars Landry 2015; rotating fluid bodies
Pani+ 2015a,b] 5 ’
non-rotating [Lai 1994, | Newtpman neutron-star m.o.dels with
¢ Andersson+Pnigouras elastic crusts and superfluidity
: Stars 2020 . i i i Passamonti+ 2021].
dynamical ] How to treat a Qynamlcal tidal field? |l ]
, * The modes are incomplete.
tide

* Can we go beyond just the f-mode? .
[Ho+Lai 1999; Planetary studies

rOtatmg stars Pnigouras+ in prep.] [Lai 2021; Dewberry+Lai 2021].




the ¢-modes: origins

Not a new idea [Cowling 1941, Mon. Not. R. Astron. Soc. 101, 3671.

Start with the first law of thermodynamics,

de = Tds + Zuxdrzx.

Assuming cold, electrically neutral, pure npe-matter,
de = (p, — px,) dn — pndx, — e =¢e(n,x,),

where g = u, — (u, + ) €ncodes the
and x, = n,/n.

When the fluid is in equilibrium g =0, the equation of state is barotropic
e = ¢(n) and there are no g-modes.



the g-modes: realistic composition

* In principle, the g-modes will contain information about the non-
barotropic nature of the equation of state.

* The g-modes are sensitive to the deviations from chemical equilibrium.
This is characterised by the (local) Brunt-Vaisala frequency N,

N2=pg2 l_i
P 1 |
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[Gittins+Andersson 2023, Mon. Not. R. Astron. Soc. 521, 3043]
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the g-modes: prospects

* The phase shifts are expected to be very [Lai 1994,

Mon. Not. R. Astron. Soc. 270, 611],

2 2

<
0.0003

AY
27

100 Hz
W,/ (21)

* x—43%x1074

 But some recent work in light of third-generation
detectors — Cosmic Explorer and the Einstein
Telescope — are more optimistic [Ho+Andersson in prep.]



beyond Newton

* |n general relativity, all motion is dissipative due to gravitational radiation,

f 26 4°Q N e Np—pVO 41
—_— — - X —> —_— = — — ]
GW 5(:5'0 5 P " pP—p GW
dE
dt
e This is formally a and inevitably spoils the completeness of
the modes.

* |n the hope of doing (at the very least) better than Newtonian models, we
are exploring whether progress can be made in [Andersson+Gittins
in prep.].

o Ultimately, we will need calculations in full general relativity to describe
neutron stars.



sumimary

Gravitational waves carry information about the material properties of
neutron stars.

We understand the static tidal regime well and can develop realistic
neutron-star models.

The dynamical tide is less well-understood and much of our understanding
still relies on Newtonian gravity. In particular, the presence of
through gravitational radiation hampers our ability to make progress.

Opportunities to are quite tantalising and the
resonances will hold information about the interior stellar physics. Third-
generation detectors will be more sensitive and may give us an
opportunity to see these effects.



