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The story so far

• Since 2015, gravitational-wave detectors have witnessed 90 compact-
binary coalescences – 2 neutron-star binaries and 3 neutron star-black
hole binaries.
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Neutron stars as gravitational-wave sources

Configurations that radiate gravitational waves

(i) neutron stars in compact binaries

(ii) (rotating) neutron stars that host non-axisymmetric deforma-
tions known as mountains

(iii) modes of oscillation (and associated instabilities)

• The first gravitational-wave detection of
a neutron star came from the remarkable
multimessenger event GW170817.

• Gravitational radiation presents an op-
portunity to constrain the elusive nuclear-
matter equation of state.
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Continuous-wave searches

(Abbott et al., 2020)

• Rotating neutron stars that host
mountains will continuously radiate
(weak) gravitational waves.

• The sensitivity of searches through
the data increases with observing
time, but this comes at computational
cost.

• There are three forms of
searches:

(i) targeted – source parameters
are known to sufficient ac-
curacy;

(ii) directed – sky localisation is
known, but spin is unknown;

(iii) all-sky – searches for un-
known stars.
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Rapidly rotating pulsars

• Searches in the gravitational-wave data have, so far, only provided upper
limits on the size of the deformations.

• No neutron star has been observed
that rotates (even remotely) close to
the centrifugal break-up frequency (∼
1 kHz for most equations of state).

• There are two competing explana-
tions for this behaviour:

(i) an interaction between the accreting
gas and the magnetic field lines;

(ii) gravitational-wave emission.
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Q22 = 1036 g cm2, ε ≈ 10−9 (Gittins and
Andersson, 2019)
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Deformed stellar models

• Traditionally, one encounters the multipole moments Q`m by examining
how the exterior gravitational potential of a non-spherical body deviates
from sphericity. In the Newtonian limit, this is given by

δΦ(r , θ, φ) =
∞∑
`=0

∑̀
m=−`

δΦ`m(r)Y`m(θ, φ), δΦ`m(r) = − 4πG
2`+ 1

Q`m

r`+1

for r ≥ R, where

Q`m ≡
∫ R

0
δρ`m(r)r`+2dr .

• The dominant multipole in gravitational-wave emission is the quadrupole
moment Q22. Thus, we specialise to the (`,m) = (2, 2) mode.

• Formally, one can use the law of momentum conservation – the Euler
equation – to characterise a stellar model,

0 = −∇ip − ρ∇iΦ+∇jtij + fi

≡ −Hi +∇jtij + fi .
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Building mountains: the usual approach
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• One can describe star B with the
perturbed Euler equation

δH SB
i ≡ H B

i − H S
i = ∇jtij(η). (1)

• Suppose one supplies a strain field
σij = tij/(2µ), then one can solve
for the perturbations.

• Note that the fiducial force fi is
hidden in the calculation.
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The question of the maximum mountain

• There have been theoretical attempts to estimate the maximum moun-
tain that a neutron-star crust can support (Ushomirsky, Cutler, and
Bildsten, 2000; Haskell, Jones, and Andersson, 2006; Johnson-McDaniel
and Owen, 2013). Such an estimate provides a natural limit on the mag-
nitude of the gravitational radiation from a rotating star.

• Previous calculations have generally followed the approach laid out by
Ushomirsky et al. (2000): ensure the crust is maximally strained at every
point. But such a technique does not respect the boundary conditions
on the star.

• To this end, we introduce another scheme that makes explicit use of the
deforming force.
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A new mountain scheme
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• The difference between stars C and
A gives

δH AC
i = ∇jtij(ξ). (2)

• It turns out that the mountains
calculated using (2) are equivalent
to solving the previous perturbed
Euler equation (1).

• Using the deforming force has two advantages: (i) we can calculate the
relaxed configuration and (ii) we are able to explicitly satisfy the bound-
ary conditions.
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Examples of the deforming force

• We generated a set of fully relativistic neutron-star models (with a real-
istic equation of state) that were subjected to a few specific deforming
forces.

• The amplitude of the force on each star was increased until the crust
began to fracture. This produced the maximum mountain that each
star could support for a given force.
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• This illustrates the dependence of the mountain on the formation history
of the star. 9



The equation of state

• We also considered the role of the equation of state in supporting the
mountains, by implementing a subset of equations of state obtained from
chiral effective field theory with a speed-of-sound parametrisation.
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Summary & future work

• We introduce a new scheme to calculate mountains that explicitly sat-
isfies the necessary boundary conditions. However, this scheme requires
the introduction of a deforming force.

• Such a force will depend on the (possibly quite complex) formation his-
tory of the star. For this reason, we believe that evolutionary calcula-
tions will be necessary to make progress on this problem (Bildsten, 1998;
Singh et al., 2020; Osborne and Jones, 2020).

• The neutron-star equation of state plays an important role in supporting
the mountains. In particular, the shear modulus of the crust (unsurpris-
ingly) has a significant impact on how large the mountains can be.

• More accurate descriptions of the neutron-star crust may need to take
into account plastic deformation.
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A closing thought

• Suppose that when a point in the
crust yields it becomes fluid. In most
situations, the strain is largest at the
top of the crust.

• This implies the following strategy:
1. the crust is strained until the top

breaks;
2. when this point yields, it becomes

fluid and the top of the crust is
deeper in the star;

3. since this new top will have less
strain, the crust can be further
strained until that point breaks.

This procedure continues iteratively.
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