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The story so far

e Since 2015, gravitational-wave detectors have witnessed

— 2 neutron-star binaries and 3 neutron star-bl

hole binaries.

Masses in the Stellar Graveyard

LIGO-Virgo-KAGR.




Neutron stars as gravitational-wave sources

Configurations that radiate gravitational waves

(i) neutron stars in compact binaries

(ii) (rotating) neutron stars that host non-axisymmetric deforma-

tions known as mountains

(iii) modes of oscillation (and associated instabilities)

DN
Less Compact \ %

DN
DN

o The first gravitational-wave detection of 500
a neutron star came from the remarkable R
= 1000

multimessenger event GW170817.

o Gravitational radiation presents an op- -
portunity to constrain the elusive nuclear- T T T

matter equation of state.
(Abbott et al., 2018)



Continuous-wave searches

¢ Rotating neutron stars that host

ise [1/VFZ]

mountains will continuously radiate
(weak) gravitational waves.

e The sensitivity of searches through

the data increases with observing

time, but this comes at computational

cost.
(Abbott et al., 2020)
e There are three forms of
searches:
(i) targeted —source parameters e €]zz(27rf)2

are known to sufficient ac- ho = o d
curacy; 2

(ii) directed — sky localisation is ~10°% ( € 5) ( f ) (lkpc)
known, but spin is unknown; 10 100 Hz d

(iii) all-sky — searches for un-
known stars.



Rapidly rotating pulsars

e Searches in the gravitational-wave data have, so far, only provided

B Simulated

¢ No neutron star has been observed = Oert
that rotates (even remotely) close to :
(N

1kHz for most equations of state).

e There are two competing explana-
tions for this behaviour:
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(i) an interaction between the accreting S ey /T
gas and the magnetic field lines; )
Qoo = 1036 gcm2, e~ 1077 (Gittins and

(ii) gravitational-wave emission.
- Andersson, 2019)



Deformed stellar models

o Traditionally, one encounters the multipole moments Q¢ by examining
how of a non-spherical body deviates
from sphericity. In the Newtonian limit, this is given by

oo ¥4
47TG ng
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for r > R, where
R
Qom = / 6pgm(r)r”2 dr.
0

e The dominant multipole in gravitational-wave emission is the quadrupole
moment Q2. Thus, we specialise to the (¢, m) = (2,2) mode.

e Formally, one can use the law of momentum conservation — the Fuler
equation — to characterise a stellar model,
0=—Vip—pV® + Vty +f;
—H; + vjtij + fi.



Building mountains: the usual approach

Apply force

A
Non-spherical

Crust solidifies

A

Non-spherical, relaxed

Remove applied force

Non-spherical, strained

One can describe star B with the
perturbed Euler equation

6HlSB = HZB — HIS = V/tu(n) (1)

Suppose

, then one can solve
for the perturbations.
Note that the fiducial force f; is
hidden in the calculation.



The question of the maximum mountain

e There have been theoretical attempts to estimate the mazimum moun-
tain that a neutron-star crust can support (Ushomirsky, Cutler, and
Bildsten, 2000; Haskell, Jones, and Andersson, 2006; Johnson-McDaniel
and Owen, 2013). Such an estimate provides a natural limit on the mag-
nitude of the gravitational radiation from a rotating star.

e Previous calculations have generally followed the approach laid out by
Ushomirsky et al. (2000): ensure the crust is maximally strained at every
point. But such a technique does not respect the boundary conditions
on the star.

¢ To this end, we introduce another scheme that makes explicit use of the

deforming force.



A new mountain scheme

¢ The difference between stars C and
Apply force A

Non-spherical A gives

SH = Vt;(8). (2)
Subtract star A from star C
o It turns out that the mountains

calculated using (2)

S Apply foree c

Spherical, relaxed Non-spherical, strained

¢

(1).

o Using the deforming force has two advantages: (i) we can calculate the
relaxed configuration and (ii) we are able to explicitly satisfy the bound-

ary conditions.



Examples of the deforming force

o We generated a set of fully relativistic neutron-star models (with a real-
istic equation of state) that were subjected to a few specific deforming
forces.

e The amplitude of the force on each star was increased until the crust
began to fracture. This produced the maximum mountain that each
star could support for a given force.

P

1.6 1. 1.0

1097 10-8
. Cf., for a 1.4Mg, 10km
., 10% T R 109 Newtonian star, Ushomirsky
T et al. (2000) found

10710~

2

10%°
max ~ 1.2 x 103% gem?,

€M% 5 1.6 x 1076,

Q2| / g e

10% 10-11

—— Solution of Laplace’s equation

Thermal pressure perturbation

=== Thermal pressure perturbation (outside core)

10%

12 14 16 18 20 22
M/ M.

e This illustrates the dependence of the mountain on



equation of state

in supporting the

e We also considered
mountains, by implementing a subset of equations of state obtained from

chiral effective field theory with a speed-of-sound parametrisation.
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Summary & future work

e We introduce a new scheme to calculate mountains that explicitly sat-
isfies the necessary boundary conditions. However, this scheme requires
the introduction of a deforming force.

o Such a force will depend on the (possibly quite complex) formation his-
tory of the star. For this reason, we believe that evolutionary calcula-
tions will be necessary to make progress on this problem (Bildsten, 1998;
Singh et al., 2020; Osborne and Jones, 2020).

o The neutron-star equation of state plays an important role in supporting
the mountains. In particular, the shear modulus of the crust (unsurpris-

ingly) has a significant impact on how large the mountains can be.

e More accurate descriptions of the neutron-star crust may need to take

into account plastic deformation.
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A closing thought

e Suppose that when a point in the
crust yields it becomes fluid. In most

situations, the strain is largest at the

top of the crust.
e This implies the following strategy:

1. the crust is strained until the top
breaks;

2. when this point yields, it becomes
fluid and the top of the crust is
deeper in the star; 10

3. since this new top will have less
strain, the crust can be further
strained until that point breaks.
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This procedure continues iteratively.
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