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The story so far

• Since 2015, gravitational-wave detectors have witnessed 90 compact-
binary coalescences – 2 neutron-star binaries and 3 neutron star-black
hole binaries.
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Neutron stars as gravitational-wave sources

Configurations that radiate gravitational waves

(i) neutron stars in compact binaries experiencing tidal effects

(ii) neutron stars that host deformations known as mountains

(iii) modes of oscillation (and associated instabilities)

• The first gravitational-wave detection of
a neutron star came from the remarkable
multimessenger event GW170817.

• Gravitational radiation presents an oppor-
tunity to constrain the elusive nuclear-
matter equation of state.

• Although there have been no confirmed de-
tections of rotating neutron stars, searches
in the data have provided upper limits on
the size of the deformations.

Figure 2. from Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A
null 2017 APJL 848 L13 doi:10.3847/2041-8213/aa920c
http://dx.doi.org/10.3847/2041-8213/aa920c
© 2017. The American Astronomical Society.

(Abbott et al., 2017)

Fabian Gittins Gravitational waves from deformed neutron stars 2



Low-mass X-ray binaries

• Low-mass X-ray binaries have long been considered
potential incubators for gravitational-wave emitters
(Wagoner, 1984).
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Accreting millisecond X-ray pulsars

Nuclear-powered X-ray pulsars

• In fact, no neutron star has been
observed that spins (even remotely)
close to the centrifugal break-up limit
(∼ 1 kHz for most equations of state).

• This implies that there is a mechan-
ism that extracts angular momentum
from the star; gravitational radiation
is a natural candidate.
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Spinning up accreting neutron stars

• We conducted a population-synthesis study evolving the spin rates of ac-
creting neutron stars, accounting for the coupling of the accreted matter
to the magnetic field and modelling both persistent and transient accre-
tion (Gittins and Andersson, 2019).

• When there was no gravitational-wave emission, our results did not re-
create the observed spin distribution.

• However, when the systems emitted gravitational waves – through either
permanent crustal mountains, thermal mountains or unstable r-modes
– we obtained similar distributions to the observations.
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Observed Future directions∗

Connect accreting population
with rapidly rotating pulsars,
incorporating gravitational-wave
emission.
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The question of the maximum mountain

• There have been theoretical attempts to estimate the maximum moun-
tain that a neutron-star crust can support (Ushomirsky, Cutler, and
Bildsten, 2000; Haskell, Jones, and Andersson, 2006; Johnson-McDaniel
and Owen, 2013). Such an estimate provides a natural limit on the mag-
nitude of the gravitational radiation from a rotating star.

• Previous calculations have generally followed the approach laid out by
Ushomirsky et al. (2000): ensure the crust is maximally strained at every
point. But, such a technique does not respect the boundary conditions
on the star.
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Building a mountain
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• We returned to this problem in order to resolve these issues (Gittins, An-
dersson, and Jones, 2021; Gittins and Andersson, 2021). We developed
a new scheme for calculating mountains that requires a description of
the deforming force.
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Examples of the deforming force

• We generated a set of fully relativistic neutron-star models (with a real-
istic equation of state) that were subjected to a few specific deforming
forces.

• The amplitude of the force on each star was increased until the crust
began to fracture. This produced the maximum mountain that each
star could support for a given force.

• This illustrates the dependence of the mountain on the formation history
of the star.
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The equation of state

• We also considered the role of the equation of state in supporting the
mountains, by implementing a subset of equations of state obtained from
chiral effective field theory with a speed-of-sound parametrisation (Tews
et al., 2018).
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Future directions∗

Conduct evolutionary calculations and study the effect of plasticity.
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Tidal deformations
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• The signal from binaries with neutron stars
are distinguished from that of binary black
holes due to finite-size effects.

• The susceptibility of the stellar material
is characterised by the tidal deformability,
which depends on the interior composition
(Hinderer, 2008).
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Impact of the crust

• We studied the impact of the crust
in static tidal deformations of neut-
ron stars (Gittins, Andersson, and
Pereira, 2020).

• For realistic stellar models, we
found the influence of the crust to
be beyond the expected sensitivity
of third-generation gravitational-
wave instruments.
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Crustal fracture during inspiral
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• We assumed an equal-mass binary with component masses M = Mcomp =

1.4 M� and calculated the crustal strain during the inspiral.
• The majority of the crust remained intact up until merger, f merger

GW ≈
1700 Hz.

Future directions∗

Consider whether magnetic fields are relevant in tidal interactions.
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Summary

• There are good reasons to expect gravitational radiation to play an im-
portant role in the dynamics of neutron stars; the spin distribution of
accreting neutron stars can be explained by gravitational-wave torques.

• The question of how large a deformation the crust can sustain will de-
pend on the (possibly quite complex) formation history of the star. For
this reason, evolutionary calculations will be necessary to make progress
on this problem (see, e.g., Bildsten, 1998; Singh et al., 2020; Osborne
and Jones, 2020).

• Compact binaries with neutron stars are proven gravitational-wave sources.
The crust is (perhaps surprisingly) robust during inspiral. However, it
leaves an imperceptibly small trace on the waveform.

• Plenty of interesting science questions remain!
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