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Introduction



Neutron stars as gravitational-wave sources

• With the first detections binary neut-
ron star mergers (GW170817 and
GW190425) we know that these
systems are promising gravitational-
wave sources.

• There are a variety of mechanisms
through which neutron stars can ra-
diate gravitational waves. These in-
clude:

(i) binary inspiral and merger (Abadie
et al., 2010);

(ii) modes of oscillation and their corres-
ponding instabilities (Friedman and
Schutz, 1978); and

(iii) rotating neutron stars that host
(non-axially symmetric) deforma-
tions known as mountains (Bildsten,
1998).
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Rapidly rotating pulsars

• No neutron star has been ob-
served that rotates (even re-
motely) close to the centrifu-
gal break-up frequency (∼ 1 kHz
for most equation-of-state candid-
ates).

• There are two competing explan-
ations for this behaviour:

1. An interaction between the ac-
creting gas and the magnetic
field lines.

2. Gravitational-wave emission.

• Searches for evidence of rotat-
ing neutron stars in gravitational-
wave data have, so far, only
provided upper limits on the size
of the deformations.
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Maximum mountain calculations



The quadrupole moment

• When a star is deformed away from perfect sphericity it develops multi-
pole moments, Qlm . In the Newtonian limit, these are (usually) defined
as

Qlm ≡
∫ R

0
δρlm(r)r l+2dr .

• Equivalently, one may read off the multipole moments from the exterior
potential,

δΦlm(r) = − 4πG
2l + 1

Qlm

r l+1 for r ≥ R.

• The dominant multipole in gravitational-wave emission is the quadru-
pole, Q22. Thus, we will specialise to the (l,m) = (2, 2) mode.

• It is common, in observation papers, to use the fiducial ellipticity,

ε =

√
8π
15

Q22

Izz
,

where Izz is the principal stellar moment of inertia (which we take to
have the fiducial value of Izz = 1045 g cm2).
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Stellar models

• One can use the equation of force balance – the Euler equation – to
characterise a stellar model,

0 = −∇ip − ρ∇iΦ+∇jtij + fi

≡ −Hi +∇jtij + fi .

where tij is the trace-free shear-stress tensor for an elastic solid and fi is
a deforming force. We will consider perturbations of this equation with
respect to different stellar models.

• The following boundary conditions must be satisfied:

δΦ(0) = 0, (1a)
RδΦ′(R) = −(l + 1)δΦ(R) (1b)

and the traction, (p gij − tij)∇jr , must be continuous throughout the
star.
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A rotation example

• Suppose a young star with a mol-
ten crust spins at an angular fre-
quency, Ω. (Such a star may be
constructed by incorporating the
centrifugal force into the Euler
equation.)

• At this rotation rate, the star
cools and the crust solidifies.

• The star then spins down to a fre-
quency, Ω̃ < Ω. Because it has
spun down, the shape of the star
changes, which builds up strain in
the crust.
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Spherical

Non-spherical

Centrifugal force

Star spins down
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Ω

Ω

Ω̃
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Building mountains: the usual approach I

S

A

B

Spherical

Non-spherical

Apply force

Remove applied force

Non-spherical, strained

ηi

Ã

Non-spherical, relaxed

Crust solidifies

• Star S:
H S

i = 0. (2)

• Star A:

H A
i = fi . (3)

• Star Ã:

H Ã
i = H A

i = fi . (4)

• Star B:

H B
i = ∇jtij(η). (5)

• It is star B that we are ultimately
interested in. It is the star with
a mountain that is supported by
elastic stresses.
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Building mountains: the usual approach II

S

A

B

Spherical

Non-spherical

Apply force

Remove applied force

Non-spherical, strained

ηi

Ã

Non-spherical, relaxed

Crust solidifies

• The difference between stars B (5)
and S (2) is simply

δH SB
i ≡ H B

i −H S
i = ∇jtij(η). (6)

This is the expression that we
wish to evaluate to obtain the
quadrupole.

• This equation immediately im-
plies a procedure for calculat-
ing the perturbations: suppose
one supplies a strain field, σij =

tij/(2µ), then one can solve for
the perturbations on the left-hand
side of (6).
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Ushomirsky, Cutler, and Bildsten I

• The earliest calculation of the maximum mountain a neutron star crust
can support was conducted by Ushomirsky, Cutler, and Bildsten (2000,
hereafter UCB). They worked in Newtonian gravity with the Cowling
approximation, δΦ = 0.

• UCB used the perturbed Euler equation (6) to obtain an integral ex-
pression for the quadrupole in terms of the shear stresses,

Q22 =

∫ rt

rb

r4

Φ′

[
3
2 t′rr − 4

β
t′r⊥ − r

β
t′′r⊥ +

(
1
2 − 1

β2

)
t′Λ +

3
r trr − β

r tr⊥

]
dr .

• UCB conjectured that the star would attain its maximum quadrupole
when the crust was maximally strained [where all the strain was assumed
to be in the (l,m) = (2, 2) mode] at every point. For a 1.4 M�, 10 km
star, they found

Qmax
22 ≈ 1.2 × 1039

( σ̄max

10−1

)
g cm2, εmax ≈ 1.6 × 10−6

( σ̄max

10−1

)
.
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Ushomirsky, Cutler, and Bildsten II

• However, the UCB strain components do not respect the continuity of
the perturbed traction, (δp gij − tij)∇jr , when the shear modulus, µ, is
discontinuous (e.g., at a phase transition).

• One can show, in the case when σΛ = const, that for the traction condi-
tions to be satisfied, one must have a strain with

σr⊥ = 0

and
2
β

rσ′
r⊥ = 3σrr +

(
1 − 2

β2

)
σΛ

at the crustal boundaries.
• Furthermore, if µ is assumed to smoothly go to zero at the crust bound-

aries, then one does not have enough equations to uniquely determine
the displacement.
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Haskell, Jones, and Andersson I

• Haskell, Jones, and Andersson (2006, hereafter HJA) set out to relax
some of the assumptions made by UCB. This included dropping the
Cowling approximation and ensuring the continuity of the traction.

• HJA did not specify a strain field. They derived the perturbation equa-
tions with respect to a spherical background and increased the perturb-
ation amplitude until the crust began to break at any point. They ob-
tained results approximately an order of magnitude larger than UCB,

Qmax
22 ≈ 3.1 × 1040

( σ̄max

10−1

)
g cm2, εmax ≈ 4.0 × 10−5

( σ̄max

10−1

)
.
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Haskell, Jones, and Andersson II

• Although HJA correctly dealt with the traction, they incorrectly (impli-
citly) assumed the relaxed shape to be spherical.

• Additionally, they introduced an additional force at the surface which
ensured the star was deformed in an (l,m) = (2, 2) way. Because the
mountains are sustained by this surface force, the maximum quadrupoles
calculated using this framework are insensitive to the shear modulus of
the crust.

• Without the deforming force, their formalism does not have the freedom
to satisfy both boundary conditions (1) on the perturbed potential, δΦ.

• Finally, there are typographical errors in the perturbation equations
which, once corrected, increase the mountain size by three orders of
magnitude, highlighting the conceptual problem with this approach.
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Johnson-McDaniel and Owen

• The most recent maximum mountain estimates come from Johnson-
McDaniel and Owen (2013, hereafter JMO). They generalised the UCB
approach to relativistic gravity while relaxing the Cowling approxima-
tion. They calculated, for a 1.4 M� star,

Qmax
22 ≈ 2 × 1039

( σ̄max

10−1

)
g cm2, εmax ≈ 3 × 10−6

( σ̄max

10−1

)
.

• For the same reasons the UCB approach does not obey the traction
conditions at the crustal boundaries, this calculation also does not keep
the traction continuous throughout the star.

• In addition, the perturbed stress-energy tensor used by JMO does not
include variations of the four-velocity.
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A new mountain scheme



A new mountain scheme I

• It would seem that calculating mountains in the usual fashion, via the
perturbed Euler equation (6), has some complications:

1. One could specify a strain field, but care must be taken in ensuring that
it satisfies the traction conditions at the boundaries.

2. One could amend the approach of HJA so that it assumed a non-spherical
shape for the relaxed configuration, but one would need to specify the
exact shape.

• To this end, we introduce another scheme which makes explicit use of
the deforming force.

Fabian Gittins Modelling neutron star mountains 14



A new mountain scheme II

S

Spherical

Apply force

Apply force

ξi

S̃

Spherical, relaxed

A

Non-spherical

C

Non-spherical, strained

Subtract star A from star C

• Star S̃:

H S̃
i = H S

i = 0. (7)

• Star C:

H C
i = ∇jtij(ξ) + fi . (8)

• The force, fi , is a proxy for the
formation history of the star that
results in its non-spherical, re-
laxed shape (that may involve
complex processes like plastic flow
and cracking). There is no re-
quirement that this force ever ac-
ted on the star.
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A new mountain scheme III

S

Spherical

Apply force

Apply force

ξi

S̃

Spherical, relaxed

A

Non-spherical

C

Non-spherical, strained

Subtract star A from star C

• The difference between stars C (8)
and A (3) gives

δH AC
i = ∇jtij(ξ). (9)

• The mountains calculated using
(9) are equivalent to solving the
previous perturbed Euler equa-
tion (6).

• Using the deforming force, fi , has
two main advantages: (i) we can
calculate the relaxed configura-
tion and (ii) the explicit introduc-
tion of the force into the Euler
equation provides the necessary
freedom to calculate the displace-
ment and satisfy all the boundary
conditions.
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A new mountain scheme IV

S

Spherical

Apply force

Apply force

ξi

S̃

Spherical, relaxed

A

Non-spherical

C

Non-spherical, strained

Subtract star A from star C

• We can use this scheme to calcu-
late the maximum mountain for a
given form of the force, fi .

• We calculate stars A and C – pay-
ing close attention to the traction
conditions for star C.

• We normalise the amplitude by
ensuring that star C reaches
breaking strain at some point in
the crust. (Note that this is the
same calculation done by HJA,
with a subtly different approach
to the deforming force.)

• We also make sure that star A has
the same force amplitude, so both
stars experience the same fi .
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Examples



The stellar models

• As a proof of principle, we consider three ex-
amples for the deforming force. We do this
to show how one can calculate mountains us-
ing this approach and to see how close we
can get to the previous maximum mountain
estimates.

• We use a polytropic equation of state for the
spherical background,

p(ρ) = Kρ1+1/n ,

with n = 1 and generate models with M =

1.4 M�, R = 10 km.
• For the shear-modulus profile in the crust, we

have
µ(ρ) = κρ,

where κ = 1016 cm2 s−2.

Core

Crust

Ocean

r

Cross section of star C.
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A solution of Laplace’s equation I

• The force has the form, fi = −ρ∇iχ. The source potential is a solution
of Laplace’s equation,

∇2χ = 0.

• With regularity, this has the general solution,

χ(r) = Ar l .
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A solution of Laplace’s equation II

• When the crust breaks we found,

|QA
22| = 2.4 × 1043

( σ̄max

10−1

)
g cm2, |εA| = 3.1 × 10−2

( σ̄max

10−1

)
and

|QC
22−QA

22| = 1.7 × 1037
( σ̄max

10−1

)
g cm2, |εC−εA| = 2.2 × 10−8

( σ̄max

10−1

)
.

• This is about two orders of magnitude below previous calculations.
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A solution of Laplace’s equation outside the core I

• In this case, the potential has the form,

χ(r) = Ar l + B/r l+1.
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A solution of Laplace’s equation outside the core II

• We calculated,

|QA
22| = 1.4 × 1041

( σ̄max

10−1

)
g cm2, |εA| = 1.8 × 10−4

( σ̄max

10−1

)
and

|QC
22−QA

22| = 4.4 × 1038
( σ̄max

10−1

)
g cm2, |εC−εA| = 5.7 × 10−7

( σ̄max

10−1

)
.

• This is a factor of a few below previous estimates and illustrates how
these estimates depend on the prescription of the force.
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A thermal pressure perturbation I

• Introduce a thermal-pressure-like force,

fi = −∇iδpth = − kB

mu
∇i(ρδT),

and assume the perturbed temperature, δT , to be quadratic in form.

0 2 4 6 8 10
r / km

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

[δ
p(
r)
−
T

1
(r

)]
/

d
y
n

cm
−2

×1029

9.2 9.4 9.6 9.8 10.0
r / km

−6

−5

−4

−3

−2

−1

0

T
2
(r

)
/

d
y
n

cm
−2

×1026

The radial (left panel) and tangential (right panel) components of the perturbed traction for the
thermal pressure perturbation.

Fabian Gittins Modelling neutron star mountains 23



A thermal pressure perturbation II

• We obtained,

|QA
22| = 9.2 × 1038

( σ̄max

10−1

)
g cm2, |εA| = 1.2 × 10−6

( σ̄max

10−1

)
and

|QC
22−QA

22| = 4.0 × 1038
( σ̄max

10−1

)
g cm2, |εC−εA| = 5.2 × 10−7

( σ̄max

10−1

)
.

• This is the same order of magnitude to the solution of Laplace’s equation
outside the core.
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Summary & future work



Summary & future work I

• There are issues with previous calculations that made it worthwhile re-
turning to the problem of constructing mountains on neutron stars.

• We introduce a new scheme to calculate mountains that explicitly sat-
isfies the necessary boundary conditions. However, this scheme requires
the introduction of a deforming force.

• We considered three examples and obtained maximum quadrupoles between
a factor of a few to two orders of magnitude below previous estimates.

Source |QA
22| / g cm2 |εA| |QC

22 − QA
22| / g cm2 |εC − εA|

Solution of Laplace’s equation 2.4 × 1043 3.1 × 10−2 1.7 × 1037 2.2 × 10−8

Solution of Laplace’s equation (outside core) 1.4 × 1041 1.8 × 10−4 4.4 × 1038 5.7 × 10−7

Thermal pressure perturbation 9.2 × 1038 1.2 × 10−6 4.0 × 1038 5.2 × 10−7

• Such a force will depend on the (possibly quite complex) formation his-
tory of the star. For this reason, we believe that evolutionary calcula-
tions will be necessary to make progress on this problem (Bildsten, 1998;
Singh et al., 2020; Osborne and Jones, 2020).
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Summary & future work II

• We have followed the usual assumption that the crust can be well de-
scribed as an elastic solid until it reaches breaking strain, at which point
the crust fails and the strain is released. Typically, laboratory materials
exhibit some plastic deformation before failure.

• A natural continuation of this work would be to extend this calculation to
relativistic gravity. One would need to use the relativistic perturbation
equations (Gittins, Andersson, and Pereira, 2020).
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