Population Synthesis of Accreting Neutron Stars Emitting Gravitational Waves

Fabian Gittins & Nils Andersson f.w.r.gittins@soton.ac.uk 5 December 2018, Continuous Waves Group

Low-Mass X-ray Binaries

- A low-mass X-ray binary comprises a compact object (in our case, a neutron star) and a low-mass companion star.
- The neutron star accretes gas from the companion which gives rise to the X-ray pulsations and can spin it up.
- There are a number of problems with our understanding of this process:
 - 1. We don't know *precisely* where the magnetic field starts to dominate interactions.
 - 2. There exists a coupling between the disc and field lines when the lines are threaded through the disc.

Distribution of Accreting Neutron Stars

- There appears to be an unusual spin distribution for accreting neutron stars...
- The fastest accreting neutron star spins at 619 Hz, but accretion should be able to spin these systems up to ~ 1.5 kHz (Cook, Shapiro & Teukolsky 1994)!
- There are two competing explanations for this behaviour:
 - An interaction between the accreting gas and the magneticfield lines (Ghosh & Lamb 1978).
 - 2. Gravitational-wave emission.

How about gravitational waves?

• It was suggested by Bildsten (1998) and Andersson (1998) that the distribution of spins could be explained through gravitational-wave emission.

$$N_{\rm GW} = -\frac{256\pi}{75} \frac{G\Omega^5 Q_{22}^2}{c^5}$$

- Gravitational waves would provide a physical explanation for the two key features of the distribution (Patruno, Haskell & Andersson 2017):
 - 1. They become relevant at ~ 500 Hz.
 - 2. They stop neutron stars spinning faster than ~ 650 Hz.

Simulating the Spin Evolution

- We performed a population synthesis study by simulating the spin evolution of accreting neutron stars.
- We modelled both persistent and transient accretion.
- For our treatment of accretion we used the phenomenological model from Ho et al. (2014):

$$N_{\rm acc} = \dot{M} r_{\rm m}^2 [\Omega_{\rm K}(r_{\rm m}) - \Omega]$$

And included gravitational waves to obtain:

$$N = \dot{M}r_{\rm m}^2 [\Omega_{\rm K}(r_{\rm m}) - \Omega] - \frac{256\pi}{75} \frac{G\Omega^5 Q_{22}^2}{c^5}$$

What produces the gravitational waves?

- There are three candidate mechanisms for producing gravitational radiation from accreting neutron stars:
 - (1) Thermal mountains.
 - (2) Mountains sustained by magnetic stresses.
 - (3) Unstable r-modes.
- We explored mechanisms (1) and (3) and also considered the case of a permanent crustal mountain.

Simulated Populations

Initial distributions:

Parameter	Distribution	Values
Mass / M_{\odot}	Single-value	1.4
Radius / km	Single-value	10
$\log_{10}(B/G)$	Gaussian	$\mu = 8.0, \sigma = 0.1$
Initial spin period / s	Flat	0.01 - 0.1
ξ	Single-value	0.5
$\log_{10}(\langle \dot{M} \rangle / M_{\odot} \mathrm{yr}^{-1})$	Gaussian	$\mu = -11.0 + \log_{10}(5), \ \sigma = 0.1$
$Q_{22} / \mathrm{g cm^2}$	Single-value	0
Evolution time / yr	Flat-in-the-log	$10^9 - 10^{10}$

We considered the case of no gravitational-wave emission and found it did not match the observed distribution.

Persistent accretion.

Transient accretion.

Simulated Populations

Fixed crustal mountains with transient accretion.

 We obtained qualitatively similar distributions for the fixed crustal mountains, thermal mountains and unstable r-modes.

Conclusions

- We have simulated the spin evolution of accreting neutron stars and considered persistent and transient accretion.
- With accretion alone we did not obtain a distribution that matched what is observed. But, including a gravitationalwave component gave qualitatively a similar distribution.
- Based on the resultant distributions alone, one cannot distinguish between the mechanisms. However, the emitted gravitational waves would tell us whether unstable r-modes or mountains are responsible.
- Preprint found at arXiv:1811.00550.